Mathematics 1120 H - Calculus II: Integrals and Series

Trent University, Summer 2018

Solutions to the Quizzes

Quiz \#1. Wednesday, 20 June. [20 minutes]
Compute each of the following integrals.

1. $\int \sec ^{2}(x) \tan ^{2}(x) d x[1]$
2. $\int \sec ^{4}(x) d x[1.5]$
3. $\int \sin ^{2}(x) \cos ^{2}(x) d x[2.5]$

Solutions. 1. We'll use the substitution $u=\tan (x)$, in which case $\frac{d u}{d x}=\sec ^{2}(x)$ and $d u=\sec ^{2}(x) d x$:

$$
\int \sec ^{2}(x) \tan ^{2}(x) d x=\int u^{2} d u=\frac{u^{3}}{3}+C=\frac{\tan ^{3}(x)}{3}+C
$$

2. We'll use the trigonometeric identity $\tan ^{2}(x)+1=\sec ^{2}(x)$ followed by the same subsitution used in the solution to question 1 above:

$$
\begin{aligned}
\int \sec ^{4}(x) d x & =\int\left(\tan ^{2}(x)+1\right) \sec ^{2}(x) d x=\int\left(u^{2}+1\right) d u \\
& =\frac{u^{3}}{3}+u+C=\frac{\tan ^{3}(x)}{3}+\tan (x)+C \quad \square
\end{aligned}
$$

3. (Using the double angle formulas and a little substitution.) We'll use the trigonometric identities $\sin (2 \theta)=2 \sin (\theta) \cos (\theta)$ and $\cos (2 \alpha)=1-2 \sin ^{2}(\alpha)$, with a little bit of rearranging to give $\sin (\theta) \cos (\theta)=\frac{1}{2} \sin (2 \theta)$ and $\sin ^{2}(\alpha)=\frac{1}{2}(1-\cos (2 \alpha))$, plus the substitution $w=4 x$, so $d w=4 d x$ and $d x=\frac{1}{4} d w$.

$$
\begin{aligned}
\int \sin ^{2}(x) \cos ^{2}(x) d x & =\int(\sin (x) \cos (x))^{2} d x=\int\left(\frac{1}{2} \sin (2 x)\right)^{2} d x \\
& =\frac{1}{4} \int \sin ^{2}(2 x) d x=\frac{1}{4} \int \frac{1}{2}(1-\cos (4 x)) d x \\
& =\frac{1}{8} \int(1-\cos (w)) \frac{1}{4} d w=\frac{1}{32}(w-\sin (w))+C \\
& =\frac{1}{32}(4 x-\sin (4 x))+C=\frac{1}{32}(4 x-2 \sin (2 x) \cos (2 x))+C \\
& =\frac{1}{32}\left(4 x-4 \sin (x) \cos (x)\left(1-2 \sin ^{2}(x)\right)\right)+C \\
& =\frac{1}{8}\left(x-\sin (x) \cos (x)+2 \sin ^{3}(x) \cos (x)\right)+C
\end{aligned}
$$

Stopping at $\frac{1}{32}(4 x-\sin (4 x))+C$ would probably be enough for most purposes.
3. (Using mainly integration by parts.) We will use integration parts with $u=\cos (x)$ and $v^{\prime}=\sin ^{2}(x) \cos (x)$, so $u^{\prime}=\frac{d}{d x} \cos (x)=-\sin (x)$ and

$$
v=\int \sin ^{2}(x) \cos (x) d x=\int w^{2} d w=\frac{1}{3} w^{3}=\frac{1}{3} \sin ^{3}(x),
$$

the latter calculation using the substitution $w=\sin (x)$, so $d w=\cos (x) d x$. It now follows that:

$$
\begin{aligned}
\int \sin ^{2}(x) \cos ^{2}(x) d x & =u v-\int u^{\prime} v d x=\cos (x) \cdot \frac{1}{3} \sin ^{3}(x)-\int(-\sin (x)) \cdot \frac{1}{3} \sin ^{3}(x) d x \\
& =\frac{1}{3} \cos (x) \sin ^{3}(x)+\frac{1}{3} \int \sin ^{4} d x \\
& =\frac{1}{3} \cos (x) \sin ^{3}(x)+\frac{1}{3} \int \sin ^{2}(x)\left(1-\cos ^{2}(x)\right) d x \\
& \left.=\frac{1}{3} \cos (x) \sin ^{3}(x)+\frac{1}{3} \int \sin ^{2}(x) d x-\frac{1}{3} \int \sin ^{2}(x) \cos ^{(} x\right) d x
\end{aligned}
$$

A little rearranging gives $\frac{4}{3} \int \sin ^{2}(x) \cos ^{2}(x) d x=\frac{1}{3} \cos (x) \sin ^{3}(x)+\frac{1}{3} \int \sin ^{2}(x) d x$, thus, using the formula $\sin ^{2}(\alpha)=\frac{1}{2}(1-\cos (2 \alpha))$ and the substitution $w=2 x$ (so $d w=2 d x$ and $\left.d x \frac{1}{2} d w\right)$:

$$
\begin{aligned}
\int \sin ^{2}(x) \cos ^{2}(x) d x & =\frac{3}{4}\left[\frac{1}{3} \cos (x) \sin ^{3}(x)+\frac{1}{3} \int \sin ^{2}(x) d x\right] \\
& =\frac{1}{4} \cos (x) \sin ^{3}(x)+\frac{1}{4} \int \sin ^{2}(x) d x \\
& =\frac{1}{4} \cos (x) \sin ^{3}(x)+\frac{1}{4} \int \frac{1}{2}(1-\cos (2 x)) d x \\
& =\frac{1}{4} \cos (x) \sin ^{3}(x)+\frac{1}{8} \int(1-\cos (w)) \frac{1}{2} d w \\
& =\frac{1}{4} \cos (x) \sin ^{3}(x)+\frac{1}{16}(w-\sin (w))+C \\
& =\frac{1}{4} \cos (x) \sin ^{3}(x)+\frac{1}{16}(2 x-\sin (2 x))+C \\
& =\frac{1}{4} \cos (x) \sin ^{3}(x)+\frac{1}{16}(2 x-2 \sin (x) \cos (x))+C \\
& =\frac{1}{4} \cos (x) \sin ^{3}(x)+\frac{1}{8}(x-\sin (x) \cos (x))+C \\
& =\frac{1}{8}\left(2 \cos (x) \sin ^{2}(x)+x-\sin (x) \cos (x)\right)+C
\end{aligned}
$$

\ldots which is what we got in the other solution for 3 , allowing for a little rearranging.

Quiz \#2. Monday, 25 June. [12 minutes]

1. Compute $\int \frac{x^{3}}{\sqrt{1-x^{2}}} d x$. [5]

Solution. (Using a trigonometric substitution.) We see a component that looks like $\sqrt{1-x^{2}}$, so will use the trigonometric substitution $x=\sin (\theta)$, so $d x=\cos (\theta) d \theta$. (Note that we then have $\sqrt{1-x^{2}}=\sqrt{1-\sin ^{2}(\theta)}=\sqrt{\cos ^{2}(\theta)}=\cos (\theta)$.) To evaluate the resulting trigonometric integral, we will us the substitution $u=\cos (\theta)$, so $d u=-\sin (\theta) d \theta$ and $(-1) d u=\sin (\theta) d \theta$.

$$
\begin{aligned}
\int \frac{x^{3}}{\sqrt{1-x^{2}}} d x & =\int \frac{\sin ^{3}(\theta)}{\sqrt{1-\sin ^{2}(\theta)}} \cos (\theta) d \theta=\int \frac{\sin ^{3}(\theta) \cos (\theta)}{\sqrt{\cos ^{2}(\theta)}} d \theta=\int \frac{\sin ^{3}(\theta) \cos (\theta)}{\cos (\theta)} d \theta \\
& =\int \sin ^{3}(\theta) d \theta=\int \sin (\theta) \sin (\theta) d \theta=\int\left(1-\cos ^{2}(\theta)\right) \sin (\theta) d \theta \\
& =\int\left(1-u^{2}\right)(-1) d u=\int\left(u^{2}-1\right) d u=\frac{u^{3}}{3}-u+C \\
& =\frac{1}{3} \cos ^{3}(\theta)-\cos (\theta)+C=\frac{1}{3}\left(\sqrt{1-x^{2}}\right)^{3}-\sqrt{1-x^{2}}+C \\
& =\frac{1}{3}\left(1-x^{2}\right)^{3 / 2}-\left(1-x^{2}\right)^{1 / 2}+C \quad \square
\end{aligned}
$$

Solution. (Using a non-trigonometric substitution.) We will use the substitution $w=$ $1-x^{2}$ to simplify the integral. Then $d w=-2 x d x$, so $\left(-\frac{1}{2}\right) d w=x d x$; note also that $x^{2}=1-w$.

$$
\begin{aligned}
\int \frac{x^{3}}{\sqrt{1-x^{2}}} d x & =\int \frac{x^{2}}{\sqrt{1-x^{2}}} x d x=\int \frac{1-w}{\sqrt{w}}\left(-\frac{1}{2}\right) d w=-\frac{1}{2} \int\left(\frac{1}{\sqrt{w}}-\frac{w}{\sqrt{w}}\right) d w \\
& =-\frac{1}{2} \int\left(w^{-1 / 2}-w^{1 / 2}\right) d w=\frac{1}{2} \int\left(w^{1 / 2}-w^{-1 / 2}\right) d w \\
& =\frac{1}{2}\left(\frac{w^{3 / 2}}{3 / 2}-\frac{w^{1 / 2}}{1 / 2}\right)+C=\frac{w^{3 / 2}}{3}-w^{1 / 2}+C \\
& =\frac{1}{3}\left(1-x^{2}\right)^{3 / 2}-\left(1-x^{2}\right)^{1 / 2}+C
\end{aligned}
$$

Quiz \#3. Wednesday, 20 June. [12 minutes]

1. Compute $\int \frac{12}{x^{3}+4 x} d x$. [5]

Solution. First, observe that $x^{3}+4 x=x\left(x^{2}+4\right)$; moreover, since $x^{2}+4 \geq 4>0$ for all $x, x^{2}+4$ has no roots and hence is an irreducible quadratic. It follows that

$$
\frac{12}{x^{3}+4 x}=\frac{12}{x\left(x^{2}+4\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+4}
$$

for some constants A, B, and C.
We need to determine A, B, and C. Since

$$
\frac{12}{x\left(x^{2}+4\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+4}=\frac{A\left(x^{2}+4\right)+(B x+C) x}{x\left(x^{2}+4\right)}=\frac{(A+B) x^{2}+C x+4 A}{x\left(x^{2}+4\right)},
$$

we must have $(A+B) x^{2}+C x+4 A=12$, so that $A+B=0, C=0$, and $4 A=12$. From the last of these we have that $A=\frac{12}{4}=3$, and it then follows from the first that $B=-A=-3$. Thus $A=3, B=-3$, and $C=0$, and so:

$$
\int \frac{12}{x^{3}+4 x} d x=\int\left(\frac{3}{x}+\frac{-3 x+0}{x^{2}+4}\right) d x=3 \int \frac{1}{x} d x-3 \int \frac{x}{x^{2}+4} d x
$$

The former integral is easy, but we'll have to put a bit more effort into the latter.
To compute $\int \frac{x}{x^{2}+4} d x$, we will use the substitution $u=x^{2}+4$, so that $d u=2 x d x$ and $x d x=\frac{1}{2} d u$. Thus:

$$
\int \frac{x}{x^{2}+4} d x=\int \frac{1}{u} \cdot \frac{1}{2} d u=\frac{1}{2} \ln (u)+C=\frac{1}{2} \ln \left(x^{2}+4\right)+C
$$

Putting all the pieces together, we have:

$$
\int \frac{12}{x^{3}+4 x} d x=3 \int \frac{1}{x} d x-3 \int \frac{x}{x^{2}+4} d x=3 \ln (x)-\frac{3}{2} \ln \left(x^{2}+4\right)+C
$$

Quiz \#4. Wednesday, 4 July. [12 minutes]
Do one (1) of the following three questions.

1. How big does n have to be to guarantee that the Right-Hand Rule sum for $\int_{0}^{2}(x+1) d x$ is within $0.1=\frac{1}{10}$ of the exact value of the integral? [5]
2. How big does n have to be to guarantee that the Trapezoid Rule sum for $\int_{0}^{2}(x+1) d x$ is within $0.1=\frac{1}{10}$ of the exact value of the integral? [5]
3. The game of trigball is played with a double-pointed "ball" that is $10 \pi \mathrm{~cm}$ long*. The cross-sections perpendicular to the axis of symmetry (which runs from one pointy end to the other) are circles of radius $10 \sin (x) \mathrm{cm}$, where x is the distance (in cm) that cross section is from one end of the ball. Find the volume of a trigball. [5]
Solutions. 1. As was worked out in class, if $\left|f^{\prime}(x)\right| \leq M$ for all $x \in[a, b]$, the RightHand Rule sum $\frac{b-a}{n} \sum_{i=1}^{n} f\left(a+i \frac{b-a}{n}\right)$ differs from the exact value of $\int_{a}^{b} f(x) d x$ by at most $\frac{M(b-a)^{2}}{n}$. In this case $a=0$ and $b=2$, while $f^{\prime}(x)=\frac{d}{d x}(x+1)=1$ means that $M=1$ will do. It follows that the Right-Hand Rule sum for n in this case differs from the integral $\int_{0}^{n}(x+1) d x$ by at most $\frac{1(2-0)^{2}}{n}=\frac{4}{n}$. In order to have the sum be guaranteed to be within 0.1 of the integral, we therefore have to ensure that $\frac{4}{n} \leq 0.1$, that is, that $40=\frac{4}{0.1} \leq n$.
Note: Neither in 1 , nor in 2 , were you actually asked to compute the relevant sum.
4. As is noted in the textbook (see Theorem 8.6.1 in $\S 8.6$), if $\left|f^{\prime \prime}(x)\right| \leq M$ for all x in the interval $[a, b]$, the Trapezoid Rule sum for n differs from the integral it approximates by at most $\frac{M(b-a)^{3}}{12 n^{2}}$. In this case $a=0$ and $b=2$, while $f^{\prime \prime}(x)=\frac{d^{2}}{d x^{2}}(x+1)=\frac{d}{d x} 1=0$, so $M=0$ will do. This means that the Trapezoid Rule sum for any $n \geq 1$ will differ from the integral by at most $\frac{0(2-0)^{3}}{12 n^{2}}=0$. That is, the Trapezoid Rule sum will give the exact answer no matter what $n \geq 1$ is for this integral. (Why?)
5. To compute the volume of a solid, we integrate the area function of the cross-sections of the solid. In this case, the area of the circular cross-section at x, for $0 \leq x \leq 10 \pi$, is $\pi r^{2}=\pi(10 \sin (x))^{2}=100 \pi \sin ^{2}(x)$ (in cm^{2}, since $r=10 \sin (x)$ is in cm$)$. Now:

$$
\begin{aligned}
& V=\int_{0}^{10 \pi} 100 \pi \sin ^{2}(x) d x=100 \pi \int_{0}^{10 \pi} \frac{1}{2}(1-\cos (2 x)) d x\left\{\begin{array}{l}
\text { Substitute } u=2 x, \text { so } \\
d u=2 d x \text { and } d x=\frac{1}{2} d u, \\
\text { with } \begin{array}{lll}
x & 0 & 10 \pi \\
u & 0 & 20 \pi
\end{array}
\end{array}\right. \\
& =\frac{100 \pi}{2} \int_{0}^{20 \pi}(1-\cos (u)) \frac{1}{2} d u=\frac{100 \pi}{4} \int_{0}^{20 \pi}(1-\cos (u)) d u=\left.25 \pi(u-\sin (u))\right|_{0} ^{20 \pi} \\
& =25 \pi(20 \pi-\sin (20 \pi))-25 \pi(0-\sin (0))=25 \pi(20 \pi-0)-25 \pi(0-0)=500 \pi
\end{aligned}
$$

Thus the volume of a trigball is $500 \pi \mathrm{~cm}^{3}$.

[^0]Quiz \#5. Wednesday, 11 July. [10 minutes]

1. Find the arc-length of $y=\frac{2}{3} x^{3 / 2}$ for $0 \leq x \leq 3$. [5]

Solution. $\frac{d y}{d x}=\frac{d}{d x}\left(\frac{2}{3} x^{3 / 2}\right)=\frac{2}{3} \cdot \frac{3}{2} x^{1 / 2}=x^{1 / 2}$. We will plug this into the integration formula for arc-length. In computing the resulting integral we will use the substitution $u=x+1$, so $d u=d x$ and $\begin{array}{ccc}x & 0 & 3 \\ u & 1 & 4\end{array}$.

$$
\begin{aligned}
\text { Arc-length } & =\int_{0}^{3} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{0}^{3} \sqrt{1+\left(x^{1 / 2}\right)^{2}} d x=\int_{0}^{3} \sqrt{1+x} d x=\int_{1}^{4} \sqrt{u} d u \\
& =\int_{1}^{4} u^{1 / 2} d u=\left.\frac{u^{3 / 2}}{3 / 2}\right|_{1} ^{4}=\frac{2}{3} \cdot 4^{3 / 2}-\frac{2}{3} \cdot 1^{3 / 2}=\frac{2}{3} \cdot 8-\frac{2}{3}=\frac{2}{3} \cdot 7=\frac{14}{3} \quad \square
\end{aligned}
$$

Quiz \#6. Monday, 16 July. [15 minutes]
Find the limit of each of the following sequences, if it exists. If the limit does not exist, give an informal explanation for why it doesn't.

1. $a_{n}=(-1)^{n}[1]$
2. $b_{n}=\frac{n}{n^{2}+1}[1]$
3. $c_{n}=\arctan (n)[1]$
4. $d_{n}=\frac{n!}{2^{n}}[2]$

Solutions. 1. $\lim _{n \rightarrow \infty}(-1)^{n}$ does not exist. If you start with $n=0$, the sequence is $1,-1,1,-1,1,-1, \ldots$ This fails to have a limit because it is not true that it gets close to one, and only one, real number.
2. A little algebra goes a long way here:

$$
\lim _{n \rightarrow \infty} \frac{n}{n^{2}+1}=\lim _{n \rightarrow \infty} \frac{n}{n^{2}+1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{\frac{n}{n}}{\frac{n^{2}+1}{n}}=\lim _{n \rightarrow \infty} \frac{1}{n+\frac{1}{n}}=0
$$

since $n+\frac{1}{n} \rightarrow \infty+0=\infty$ as $n \rightarrow \infty$.
3. $\lim _{n \rightarrow \infty} \arctan (n)=\lim _{x \rightarrow \infty} \arctan (x)=\frac{\pi}{2}$ since $y=\arctan (x)$ has a horizontal asyptote of $y=\frac{\pi}{2}$ as $x \rightarrow \infty$.
4. This limit fails to exist; in fact, $\lim _{n \rightarrow \infty} \frac{n!}{2^{n}}=\infty$. The first five terms of the sequence are $a_{0}=\frac{0!}{2^{0}}=\frac{1}{1}=1, a_{1}=\frac{1!}{2^{1}}=\frac{1}{2}, a_{2}=\frac{2!}{2^{2}}=\frac{2}{4}=\frac{1}{2}, a_{3}=\frac{3!}{2^{3}}=\frac{6}{8}=\frac{3}{4}$, and $a_{4}=\frac{4!}{2^{4}}=\frac{24}{16}=\frac{3}{2}$. After this point, $a_{n}>1$ because if $a_{n-1}>1$ and $n \geq 5$, then $a_{n}=a_{n-1} \cdot \frac{n}{2}>1 \cdot \frac{5}{2}=\frac{5}{2}>1$. Moreover, this same comparison hows that $a_{n}=a_{n-1} \cdot \frac{n}{2}>\frac{n}{2}$. Since $\lim _{n \rightarrow \infty} \frac{n}{2}=\infty$, we must then have $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{n!}{2^{n}}=\infty$.

Quiz \#7. Wednesday, 18 July. [20 minutes]
Determine whether each of the following series converges or not.

1. $\sum_{n=0}^{\infty} \frac{2^{n-1}}{e^{n+1}}[1]$
2. $\sum_{n=2}^{\infty} \frac{1}{n^{2}-1}[1]$
3. $\sum_{n=0}^{\infty} \frac{n}{\sqrt{n^{2}+1}}[1.5]$
4. $\sum_{n=0}^{\infty} \frac{\cos (n)}{n \ln \left(2^{n}+1\right)}[1.5]$

Solutions. 1. Observe that $\sum_{n=0}^{\infty} \frac{2^{n-1}}{e^{n+1}}=\sum_{n=0}^{\infty} \frac{1}{2 e}\left(\frac{2}{e}\right)^{n}$ is a geometric series with first term $a=\frac{1}{2 e}$ and common ratio $r=\frac{2}{e}$. Since $2<e \approx 2.718$, the common ratio $|r|=\frac{2}{e}<1$, so the series converges.
2. $\sum_{n=2}^{\infty} \frac{1}{n^{2}-1}$ is a series where each term is a rational function in n. Considered as a polynomial in n, the numerator 1 has degree 0 , while the denominator $n^{2}-1$ has degree 2. Since $p=2-0=2>1$ for this series, the p-Test implies that the series converges.
3. Note that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{n}{\sqrt{n^{2}+1}} & =\lim _{n \rightarrow \infty} \frac{n}{\sqrt{n^{2}+1}} \cdot \frac{\frac{1}{n}}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{\frac{n}{n}}{\sqrt{\frac{1}{n^{2}}\left(n^{2}+1\right)}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{\sqrt{1+\frac{1}{n^{2}}}}=\frac{1}{\sqrt{1+0}}=1
\end{aligned}
$$

because $\frac{1}{n^{2}} \rightarrow 0$ as $n \rightarrow \infty$. Since $\lim _{n \rightarrow \infty} \frac{n}{\sqrt{n^{2}+1}}=1 \neq 0$, it follows by the Divergence Test that the series $\sum_{n=0}^{\infty} \frac{n}{\sqrt{n^{2}+1}}$ diverges.
4. Whenever $n \geq 1$, we have

$$
0 \leq\left|\frac{\cos (n)}{n \ln \left(2^{n}+1\right)}\right| \leq \frac{1}{n \ln \left(2^{n}\right)} \leq \frac{1}{n \cdot n \ln (2)}=\frac{1}{\ln (2)} \cdot \frac{1}{n^{2}}
$$

so the series $\sum_{n=1}^{\infty}\left|\frac{\cos (n)}{n \ln \left(2^{n}+1\right)}\right|$ converges by comparison with the series $\sum_{n=1}^{\infty} \frac{1}{\ln (2)} \cdot \frac{1}{n^{2}}$, which converges by the p-Test since it has $p=2-0=2>1$. Thus the series $\sum_{n=0}^{\infty} \frac{\cos (n)}{n \ln \left(2^{n}+1\right)}$ is absolutely convergent, which means it's convergent.

Quiz \#8. Monday, 23 July. [20 minutes]
Determine whether each of the following series converges or not.

1. $\sum_{n=0}^{\infty} \frac{4^{n}+1}{5^{n}+2}[1]$
2. $\sum_{n=1}^{\infty}\left[\ln \left(e^{-1 / n}\right)\right]^{n}$ [2]
3. $\sum_{n=2}^{\infty}\left(\frac{7}{n}\right)^{n}$ [2]

Solutions. 1. Looking at the dominant terms in $\frac{4^{n}+1}{5^{n}+2}$, it's a pretty good bet that the series should behave similarly to $\sum_{n=0}^{\infty} \frac{4^{n}}{5^{n}}$. As

$$
\lim _{n \rightarrow \infty} \frac{\frac{4^{n}+1}{5^{n}+2}}{\frac{4^{n}}{5^{n}}}=\lim _{n \rightarrow \infty} \frac{4^{n}+1}{5^{n}+2} \cdot \frac{5^{n}}{4^{n}}=\lim _{n \rightarrow \infty} \frac{4^{n}+1}{5^{n}+2} \cdot \frac{\frac{1}{4^{n}}}{\frac{1}{5^{n}}}=\lim _{n \rightarrow \infty} \frac{1+\frac{1}{4^{n}}}{1+\frac{2}{5^{n}}}=\frac{1+0}{1+0}=1
$$

it follows by the Limit Comparison Test that $\sum_{n=0}^{\infty} \frac{4^{n}+1}{5^{n}+2}$ converges or diverges exactly as $\sum_{n=0}^{\infty} \frac{4^{n}}{5^{n}}$ does. Since $\sum_{n=0}^{\infty} \frac{4^{n}}{5^{n}}=\sum_{n=0}^{\infty}\left(\frac{4}{5}\right)^{n}$ is a geometric series with first term $a=1$ and common ratio $r=\frac{4}{5}$, and $|r|=\frac{4}{5}<1$, it converges. Thus $\sum_{n=0}^{\infty} \frac{4^{n}+1}{5^{n}+2}$ also converges.
2. $\sum_{n=1}^{\infty}\left[\ln \left(e^{-1 / n}\right)\right]^{n}=\sum_{n=1}^{\infty}\left[\frac{-1}{n} \ln (e)\right]^{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{n}}$ is obviously an alternating series. The underlying sequence of positive terms is decreasing, as $n+1>n$ implies that ($n+$ $1)^{n+1}>(n+1)^{n}>n^{n}$, which implies that $\frac{1}{(n+1)^{n+1}}<\frac{1}{n^{n}}$. Moreover, since $n^{n} \rightarrow \infty$ (very fast!) as $n \rightarrow \infty$, we have that $\lim _{n \rightarrow \infty} \frac{1}{n^{n}}=0$. It now follows by the Alternating Series Test that $\sum_{n=1}^{\infty}\left[\ln \left(e^{-1 / n}\right)\right]^{n}$ converges. (Alternatively, it's not hard to show that it converges absolutely, by an argument similar to that used in the solution to question 3 below, and hence converges.)
3. Note that for all $n \geq 41^{*}$, we have $41^{n}<n^{n}$, so $0<\left(\frac{7}{n}\right)^{n}<\left(\frac{7}{41}\right)^{n} \cdot \sum_{n=2}^{\infty}\left(\frac{7}{41}\right)^{n}$ is a geometric series with first term $a=\frac{7^{2}}{41^{2}}$ and common ratio $r=\frac{7}{41}$, which converges because $|r|=\frac{7}{41}<1$. It now follows by the (Basic) Comparison Test that $\sum_{n=2}^{\infty}\left(\frac{7}{n}\right)^{n}$ converges as well.

[^1]Quiz \#9. Wednesday, 25 July. [20 minutes]
Find the radius and interval of convergence of each of the following power series.

1. $\sum_{n=1}^{\infty} \frac{x^{n}}{n^{n}}[1.5]$
2. $\sum_{n=0}^{\infty} \frac{5^{n+1}}{2^{n}} x^{n}[1.5]$
3. $\sum_{n=0}^{\infty} \frac{n+3}{2 n+1} x^{n}$ [2]

Solutions. 1. We will use the Root Test to find the radius of convergence. Since

$$
\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=\lim _{n \rightarrow \infty}\left|\frac{x^{n}}{n^{n}}\right|^{1 / n}=\lim _{n \rightarrow \infty}\left[\left(\frac{|x|}{n}\right)^{n}\right]^{1 / n}=\lim _{n \rightarrow \infty} \frac{|x|}{n}=0<1
$$

for all $x \in \mathbb{R}$, it follows by the Root Test that $\sum_{n=1}^{\infty} \frac{x^{n}}{n^{n}}$ converges for all x, and hence the radius of convergence of this series is ∞ and its interval of convergence is $(-\infty, \infty)$.
2. We will use the fact that $\sum_{n=0}^{\infty} \frac{5^{n+1}}{2^{n}} x^{n}$ is a geometric series with common ratio $r=\frac{5 x}{2}$. This means that it converges exactly when $|r|=\left|\frac{5 x}{2}\right|<1$, i.e. when $|x|<\frac{2}{5}$. It follows that the radius of convergence is $\frac{2}{5}$ and the interval of convergence is $\left(-\frac{2}{5}, \frac{2}{5}\right)$.
3. We will use the Ratio Test to find the radius of convergence. Since

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{\frac{(n+1)+3}{2(n+1)+1} x^{n+1}}{\frac{n+3}{2 n+1} x^{n}}\right|=\lim _{n \rightarrow \infty} \frac{(n+4)|x|^{n+1}}{2 n+3} \cdot \frac{2 n+1}{(n+3)|x|^{n}} \\
& =\lim _{n \rightarrow \infty} \frac{2 n^{2}+9 n+4}{2 n^{2}+9 n+9}|x|=|x| \lim _{n \rightarrow \infty} \frac{2 n^{2}+9 n+4}{2 n^{2}+9 n+9} \cdot \frac{1 / n^{2}}{1 / n^{2}} \\
& =|x| \lim _{n \rightarrow \infty} \frac{2+\frac{9}{n}+\frac{1}{n^{2}}}{2+\frac{9}{n}+\frac{9}{n^{2}}}=|x| \cdot \frac{2+0+0}{2+0+0}=|x|
\end{aligned}
$$

the Ratio Test tells us that the series converges for all x with $|x|<1$ and diverges for all x with $|x|>1$. Thus the radius of convergence of this series is 1 .

To find the interval of convergence, we need to determine what happens at the endpoints, $x=-1$ and $x=1$. When $x=-1$ we have the series $\sum_{n=0}^{\infty} \frac{n+3}{2 n+1}(-1)^{n}$, which fails the Divergence Test. Since
$\lim _{n \rightarrow \infty}\left|\frac{n+3}{2 n+1}(-1)^{n}\right|=\lim _{n \rightarrow \infty} \frac{n+3}{2 n+1}=\lim _{n \rightarrow \infty} \frac{n+3}{2 n+1} \cdot \frac{1 / n}{1 / n}=\lim _{n \rightarrow \infty} \frac{1+\frac{3}{n}}{2+\frac{1}{n}}=\frac{1+0}{2+0}=\frac{1}{2} \neq 0$, it cannot be true that $\lim _{n \rightarrow \infty} \frac{n+3}{2 n+1}(-1)^{n} 0$. Thus, by the Divergence Test, $\sum_{m=0}^{\infty} \frac{n+3}{2 n+1}(-1)^{n}$ does not converge. Similarly, when $x=1$, we have the series $\sum_{n=0}^{\infty} \frac{n+3}{2 n+1} 1^{n}=\sum_{n=0}^{\infty} \frac{n+3}{2 n+1}$, which also fails the Divergence Test by the limit computed above. It follows that the interval of convergence of the given power series is $(-1,1)$.

[^0]: * The points are sharp. Please be careful when playing with a trigball.

[^1]: * I used 41 because it's my favourite integer. Any real number greater than 7 would do just as well in this argument.

