Mathematics 1120H - Calculus II: Integrals and Series
 Trent University, Summer 2018
 Final Examination

19:00-22:00 on Monday, 30 July, in CGS 105.
Time: 3 hours.
Brought to you by Стефан Біланюк.
Instructions: Do parts A, B, and C, and, if you wish, part D. Show all your work and justify all your answers. If in doubt about something, ask!
Aids: Any calculator; (all sides of) one aid sheet; one (1) brain (no neuron limit).
Part A. Do all four (4) of 1-4.

1. Evaluate any four (4) of the integrals a-f. [$20=4 \times 5$ each]
a. $\int_{-1}^{0} \frac{1}{x^{2}+2 x+2} d x$
b. $\int_{0}^{1} \frac{1}{\sqrt{y}} d y$
c. $\int_{-\pi / 4}^{\pi / 4} \sec ^{2}(z) \tan (z) d z$
d. $\int\left(1+w^{2}\right)^{1 / 2} d w$
e. $\int_{0}^{\infty} v e^{-v} d v$
f. $\int \frac{u+1}{u^{3}-u} d u$
2. Determine whether the series converges in any four (4) of $\mathbf{a}-\mathbf{f}$. [$20=4 \times 5 \mathrm{each}$]
a. $\sum_{n=0}^{\infty} \frac{n!}{3^{n}}$
b. $\sum_{m=1}^{\infty} \frac{(-1)^{m}}{\sqrt{m!}}$
c. $\sum_{\ell=2}^{\infty} \frac{\ell+2}{\ell^{5 / 2}+\ell^{3 / 2}+\ell^{1 / 2}}$
d. $\sum_{k=3}^{\infty} \frac{3}{k[\ln (k)]^{2}}$
e. $\sum_{j=4}^{\infty} \frac{j \cos (j)}{(2 j)!}$
f. $\sum_{i=5}^{\infty} e^{-i} \arctan (i)$
3. Do any four (4) of a-f. [$20=4 \times 5$ each]
a. Find the Taylor series at $a=0$ of $f(x)=\frac{1}{x+1}$.
b. Find the arc-length of the curve $y=\ln (\cos (x))$, where $0 \leq x \leq \frac{\pi}{4}$.
c. Suppose $a_{0}=a_{1}=1$ and $a_{n}=a_{n-1}+a_{n-2}$ for all $n \geq 2$. Compute $\lim _{n \rightarrow \infty} \frac{1}{a_{n}}$.
d. Find the area of the region between $y=1$ and $y=e^{-x}$ for $0 \leq x \leq \ln (2)$.
e. Determine the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{2^{n+1} x^{n}}{4^{n}+1}$.
f. Use the Right-Hand Rule or the Trapezoid Rule to approximate the definite integral $\int_{0}^{1} \sin (\pi x) d x$ to within 1 of the exact value.
4. Consider the finite region bounded by $x=0, y=1$, and $y=x^{3}$.
a. Find the area of this region. [4]
b. Find the volume of the solid obtained by revolving the region about $x=0$. [8]

Part B. Do either one (1) of $\mathbf{5}$ or $\mathbf{6}$. [14]
5. A solid is obtained by revolving the triangle with vertices at $(1,0),(2,0)$, and $(2,1)$ about the y-axis..
a. Find the volume of the solid. [7]
b. Find the surface area of the solid. [7]
6. Consider the region below $y=x-1$ and above $y=(x-1)^{2}$. Find the volume of the solid obtained by revolving this region about ...
a. ... the x-axis. [7]
b. ... the y-axis. [7]

Part C. Do either one (1) of $\mathbf{7}$ or 8. [14]
7. Use Taylor's formula to find the Taylor series at $a=0$ of $f(x)=e^{x+1}$ and determine its radius and interval of convergence.
8. Find the Taylor series at $a=0$ of $f(x)=\frac{x}{1+x^{2}}$ and determine its radius and interval of convergence.

$$
[\text { Total }=100]
$$

Part D. Bonus problems! If you feel like it and have the time, do one or both of these.
V . The longest straight line that can be drawn entirely on the surface of a perfectly flat and circular road of some constant width is 50 m long. What is the surface area of the road? [1]
^. Write a haiku (or several :-) touching on calculus or mathematics in general. [1]

What is a haiku?

seventeen in three:
five and seven and five of
syllables in lines
Enjoy the rest of your summer!

