Mathematics 1120H – Calculus II: Integrals and Series TRENT UNIVERSITY, Summer 2018 Final Examination 19:00-22:00 on Monday, 30 July, in CGS 105.

Time: 3 hours.

Brought to you by Стефан Біланюк.

Instructions: Do parts **A**, **B**, and **C**, and, if you wish, part **D**. Show all your work and justify all your answers. *If in doubt about something*, **ask!**

Aids: Any calculator; (all sides of) one aid sheet; one (1) brain (no neuron limit).

Part A. Do all four (4) of 1-4.

1. Evaluate any four (4) of the integrals **a**-**f**. $[20 = 4 \times 5 \text{ each}]$

a.
$$\int_{-1}^{0} \frac{1}{x^2 + 2x + 2} dx$$
 b. $\int_{0}^{1} \frac{1}{\sqrt{y}} dy$ **c.** $\int_{-\pi/4}^{\pi/4} \sec^2(z) \tan(z) dz$
d. $\int (1 + w^2)^{1/2} dw$ **e.** $\int_{0}^{\infty} v e^{-v} dv$ **f.** $\int \frac{u+1}{u^3 - u} du$

2. Determine whether the series converges in any four (4) of \mathbf{a} -f. [20 = 4 × 5 each]

a.
$$\sum_{n=0}^{\infty} \frac{n!}{3^n}$$
 b. $\sum_{m=1}^{\infty} \frac{(-1)^m}{\sqrt{m!}}$ **c.** $\sum_{\ell=2}^{\infty} \frac{\ell+2}{\ell^{5/2} + \ell^{3/2} + \ell^{1/2}}$
d. $\sum_{k=3}^{\infty} \frac{3}{k \left[\ln(k)\right]^2}$ **e.** $\sum_{j=4}^{\infty} \frac{j \cos(j)}{(2j)!}$ **f.** $\sum_{i=5}^{\infty} e^{-i} \arctan(i)$

3. Do any four (4) of **a**-**f**. $[20 = 4 \times 5 \text{ each}]$

- **a.** Find the Taylor series at a = 0 of $f(x) = \frac{1}{x+1}$.
- **b.** Find the arc-length of the curve $y = \ln(\cos(x))$, where $0 \le x \le \frac{\pi}{4}$.
- c. Suppose $a_0 = a_1 = 1$ and $a_n = a_{n-1} + a_{n-2}$ for all $n \ge 2$. Compute $\lim_{n \to \infty} \frac{1}{a_n}$.
- **d.** Find the area of the region between y = 1 and $y = e^{-x}$ for $0 \le x \le \ln(2)$.
- **e.** Determine the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{2^{n+1}x^n}{4^n+1}.$
- **f.** Use the Right-Hand Rule or the Trapezoid Rule to approximate the definite integral $\int_0^1 \sin(\pi x) dx$ to within 1 of the exact value.
- 4. Consider the finite region bounded by x = 0, y = 1, and $y = x^3$.
 - **a.** Find the area of this region. [4]
 - **b.** Find the volume of the solid obtained by revolving the region about x = 0. [8]

Part B. Do either *one* (1) of **5** or **6**. *[14]*

- 5. A solid is obtained by revolving the triangle with vertices at (1,0), (2,0), and (2,1) about the *y*-axis..
 - **a.** Find the volume of the solid. [7]
 - **b.** Find the surface area of the solid. [7]
- 6. Consider the region below y = x 1 and above $y = (x 1)^2$. Find the volume of the solid obtained by revolving this region about ...
 - **a.** ... the x-axis. (7)
 - **b.** ... the y-axis. [7]

Part C. Do either one (1) of 7 or 8. [14]

- 7. Use Taylor's formula to find the Taylor series at a = 0 of $f(x) = e^{x+1}$ and determine its radius and interval of convergence.
- 8. Find the Taylor series at a = 0 of $f(x) = \frac{x}{1+x^2}$ and determine its radius and interval of convergence.

|Total = 100|

Part D. Bonus problems! If you feel like it and have the time, do one or both of these.

- V. The longest straight line that can be drawn entirely on the surface of a perfectly flat and circular road of some constant width is 50 m long. What is the surface area of the road? [1]
- Λ . Write a haiku (or several :-) touching on calculus or mathematics in general. [1]

What is a haiku? seventeen in three: five and seven and five of syllables in lines

ENJOY THE REST OF YOUR SUMMER!