
Mathematics 1120H – Calculus II: Integrals and Series
Trent University, Summer 2018

Solutions to the Final Examination
19:00-22:00 on Monday, 30 July, in CGS 105.

Time: 3 hours. Brought to you by Stefan B�lan�k.

Instructions: Do parts A, B, and C, and, if you wish, part D. Show all your work and
justify all your answers. If in doubt about something, ask!

Aids: Any calculator; (all sides of) one aid sheet; one (1) brain (no neuron limit).

Part A. Do all four (4) of 1–4.

1. Evaluate any four (4) of the integrals a–f. [20 = 4 × 5 each]

a.

∫ 0

−1

1

x2 + 2x+ 2
dx b.

∫ 1

0

1
√
y
dy c.

∫ π/4

−π/4
sec2(z) tan(z) dz

d.

∫ (
1 + w2

)1/2
dw e.

∫ ∞
0

ve−v dv f.

∫
u+ 1

u3 − u
du

Solutions. a. Note that x2 + 2x+ 2 = x2 + 2x+ 1 + 1 = (x+ 1)2 + 1. We will use this

fact and the substitution u = x+ 1, so du = dx and
x −1 0
u 0 1

.

∫ 0

−1

1

x2 + 2x+ 2
dx =

∫ 0

−1

1

(x+ 1)2 + 1
dx =

∫ 1

0

1

u2 + 1
du = arctan(u)|10

= arctan(1)− arctan(0) =
π

4
− 0 =

π

4
�

b. Since f(y) =
1
√
y

= y−1/2 has an asymptote at y = 0,

∫ 1

0

1
√
y
dy is an improper

integral.

∫ 1

0

1
√
y
dy = lim

t→0+

∫ 1

t

y−1/2 dy = lim
t→0+

y1/2

1/2

∣∣∣∣1
t

= lim
t→0+

2
√
y|1t

= lim
t→0+

[
2
√

1− 2
√
t
]

= 2− 2
√

0 = 2− 0 = 2 �

c. We’ll use the substitution w = sec(z), so dw = sec(z) tan(z) dz and
z −π/4 π/4
w

√
(2)

√
2

.

Note that cos (−π/4) = cos (π/4) = 1√
2
, so sec (−π/4)) = sec (π/4). Note also that∫ a

a
f(z) dz = 0 for any constant a and integrable function f(z). It follows that:

∫ π/4

−π/4
sec2(z) tan(z) dz =

∫ √2

√
2

w dw = 0 �
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d. We will use the trigonometric substitution w = tan(θ), so dw = sec2(θ) dθ, as well as

the reduction formula

∫
secn(θ) dθ =

1

n− 1
secn−2(θ) tan(θ) +

n− 2

n− 1

∫
secn−2(θ) dθ.∫ (

1 + w2
)1/2

dw =

∫ (
1 + tan2(θ)

)1/2
sec2(θ) dθ =

∫ (
sec2(θ)

)1/2
sec2(θ) dθ

=

∫
sec(θ) sec2(θ) dθ =

∫
sec3(θ) dθ

=
1

3− 1
sec3−2(θ) tan(θ) +

3− 2

3− 1

∫
sec3−2(θ) dθ

=
1

2
tan(θ) sec(θ) +

1

2

∫
sec(θ) dθ

=
1

2
tan(θ) sec(θ) +

1

2
ln (tan(θ) + sec(θ)) + C

=
1

2
w
(
1− w2

)1/2
+

1

2
ln
(
w +

(
1− w2

)1/2)
+ C �

e. This is obviously an improper intehral, so we will need to compute a limit. To obtain
the necessary antiderivative, we will use integration by parts, with u = v and w′ = e−v,
so u′ = 1 and w = (−1)e−v. We will also make use of the fact that e−t → 0 much faster
than t→∞, so that lim

t→∞
te−t = 0.∫ ∞

0

ve−v dv = lim
t→∞

∫ t

0

ve−v dv = lim
t→∞

[
v · (−1)e−v

∣∣t
0
−
∫ t

0

1 · (−1)e−v dv

]
= lim
t→∞

[(
−te−t

)
−
(
−0e−0

)
+

∫ t

0

e−v dv

]
= lim
t→∞

[
−te−t + 0 + (−1)e−v

∣∣t
0

]
= lim
t→∞

[
−te−t + (−1)e−t − (−1)e−0

]
= lim
t→∞

[
−te−t − e−t + 1

]
= −0− 0 + 1 = 1 �

f. Notice that because u3 − u = u
(
u2 − 1

)
= u(u− 1)(u+ 1). , we have:∫

u+ 1

u3 − u
du =

∫
u+ 1

u(u− 1)(u+ 1)
du =

∫
1

u(u− 1)
du

We will now apply the method of partial fractions.

1

u(u− 1)
=
A

u
+

B

u− 1
=
A(u− 1) +Bu

u(u− 1)
=

(A+B)u−A
u(u− 1)

,

so we must have A + B = 0 and −A = 1, from which it follows that A = −1 and
B = −A = −(−1) = 1. Thus:∫

u+ 1

u3 − u
du =

∫
1

u(u− 1)
du =

∫ (
−1

u
+

1

u− 1

)
du = −

∫
1

u
du+

∫
1

u− 1
du

= −ln(u) + ln(u− 1) + C = ln

(
u− 1

u

)
+ C = ln

(
1− 1

u

)
+ C �
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2. Determine whether the series converges in any four (4) of a–f. [20 = 4 × 5 each]

a.

∞∑
n=0

n!

3n
b.

∞∑
m=1

(−1)m√
m!

c.

∞∑
`=2

`+ 2

`5/2 + `3/2 + `1/2

d.
∞∑
k=3

3

k [ln(k)]
2 e.

∞∑
j=4

j cos(j)

(2j)!
f.
∞∑
i=5

e−i arctan(i)

Solutions. a. (Divergence Test) Note that a7 =
7!

27
=

5040

2187
> 1. Since

n+ 1

3
>

8

3
> 1

when n ≥ 7, we have an+1 =
(n+ 1)!

3n+1
=
n!

3n
· n+ 1

3
>
n!

3n
= an > 1 for all n ≥ 7. It follows

that lim
n→∞

an 6= 0, if the limit exists. Hence the given series diverges by the Divergence

Test. �

a. (Ratio Test) Since

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣
(n+1)!
3n+1

n!
3n

∣∣∣∣∣ = lim
n→∞

(n+ 1)!

3n+1
· 3n

n!
= lim
n→∞

n+ 1

3
=∞ > 1 ,

it follows that the given series diverges by the Ratio Test. �

b. (Alternating Series Test) Since the denominator
√
m! > 0 for all m ≥ 1 and the

numerator (−1)m alternates, the terms of the series alternate in sign. More over, since m!

and
√
x both increase as m increases, we have

√
(m+ 1)! >

√
m! and hence

∣∣∣∣∣ (−1)m+1√
(m+ 1)!

∣∣∣∣∣ =

1√
(m+ 1)!

| < 1√
m!

=

∣∣∣∣ (−1)m√
m!

∣∣∣∣ for all m ≥ 1. Finally, since m! → ∞ as m → ∞ and

√
x → ∞ as x → ∞,

√
m! → ∞ as m → ∞, and so

(−1)m√
m!

→ 0 as m → ∞. Since it

satisfies the three conditions of the Alternating Series Test, the series converges. �

b. (Ratio Test) Since

lim
m→∞

∣∣∣∣am+1

am

∣∣∣∣ = lim
m→∞

∣∣∣∣∣∣∣
(−1)m+1√

(m+1)!

(−1)m√
m!

∣∣∣∣∣∣∣ = lim
m→∞

∣∣∣∣∣ (−1)m+1√
(m+ 1)!

·
√
m!

(−1)m

∣∣∣∣∣
= lim
m→∞

√
m!

(m+ 1)!
= lim
m→∞

√
1

m+ 1
=
√

0 = 0 < 1 ,

the given series converges by the Ratio Test. �

c. (Comparison Test) For all ` ≥ 2,
`+ 2

`5/2 + `3/2 + `1/2
≤ `+ `

`5/2
=

2`

`5/2
=

2

`3/2
. Since the

series

∞∑
`=2

2

`3/2
converges by the p-Test because p = 3

2 − 0 = 3
2 = 1.5 > 1, it follows that

the given series converges by the Comparison Test. �
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c. (Limit Comparison Test) Since

lim
`→∞

`+2
`5/2+`3/2+`1/2

1
`3/2

= lim
`→∞

`+ 2

`5/2 + `3/2 + `1/2
· `

3/2

1
= lim
`→∞

`5/2 + 2`3/2

`5/2 + `3/2 + `1/2

= lim
`→∞

`5/2 + 2`3/2

`5/2 + `3/2 + `1/2
·

1
`5/2

1
`5/2

= lim
`→∞

1 + 2
`

1 + 1
` + 1

`2

=
1 + 0

1 + 0 + 0
= 1 ,

and 0 < 1 < ∞, the Limit Comparison Test tells us that the given series converges or

diverges exactly as the series

∞∑
`=2

1

`3/2
does. As this series converges by the p-Test because

p = 3
2 − 0 = 3

2 > 1, it follows that the given series converges too. �

Note. In both of the solutions to c above, the use of the p-Test could have been replaced
by a somewhat more cumbersome use of the Integral Test.

c. (Generalized p-Test) The general term
`+ 2

`5/2 + `3/2 + `1/2
of the series is a rational

function with a denominator of degree 5
2 and a numerator of degree 1. Since p = 5

2 − 1 =
3
2 = 1.5 > 1, it follows by the Generalized p-Test that the given series converges. �

d. (Integral Test) By the Integral Test, the series
∞∑
k=3

3

k [ln(k)]
2 converges if and only if the

improper integral

∫ ∞
3

3

x [ln(x)]
2 dx converges, i.e. evaluates out to a real number. To eval-

uate this integral, we will use the substitution u = ln(x), so du = 1
x dx and

x 3 ∞
u ln(3) ∞ .

Since ∫ ∞
3

3

x [ln(x)]
2 dx =

∫ ∞
ln(3)

3

u2
du = lim

t→∞

∫ t

ln(3)

3

u2
du = lim

t→∞
− 3

u

∣∣∣∣t
ln(3)

= lim
t→∞

[(
−3

t

)
−
(
− 3

ln(3)

)]
= −0 +

3

ln(3)
=

3

ln(3)
,

it follows that the given series converges. �

e. (Comparison Test and Ratio Test) We will show that the given series converges ab-

solutely, and hence converges. First,

∣∣∣∣j cos(j)

(2j)!

∣∣∣∣ ≤ j

(2j)!
for all j ≥ 4j, so

∞∑
j=4

j cos(j)

(2j)!

converges absolutely by the Comparison Test if the series
∞∑
j=4

j

(2j)!
converges. Second, to

4



see that this series converges we apply the Ratio Test. Since

lim
j→∞

∣∣∣∣aj+1

aj

∣∣∣∣ = lim
j→∞

∣∣∣∣∣
j+1

(2j+2)!

j
(2j)!

∣∣∣∣∣ = lim
j→∞

j + 1

(2j + 2)!
· (2j)!

j
= lim
j→∞

j + 1

(2j + 2)(2j + 1)j

= lim
j→∞

1

2j(2j + 1))
= lim
j→∞

1

4j2 + 2j
= 0 < 1 ,

the series

∞∑
j=4

j

(2j)!
does converge by the Ratio Test, and so the given series converges

absolutely. �

f. (Comparison Test) Since 0 < e−i arctan(i) <
π

2
e−i =

π

2
· 1

ei
for all i ≥ 5, the given

series

∞∑
i=5

e−i arctan(i) converges by comparison with the series
π

2

∞∑
i=5

1

ei
, which converges

because it is a geometric series with |r| = 1

e
< 1. �

f. (Ratio Test) Since

lim
i→∞

∣∣∣∣ai+1

ai

∣∣∣∣ = lim
i→∞

∣∣∣∣e−i−1 arctan(i+ 1)

e−i arctan(i)

∣∣∣∣ = lim
i→∞

e−1 · arctan(i+ 1)

arctan(i)
= e−1 · π/2

π/2
=

1

e
< 1 ,

the Ratio Test implies that the given series converges. �
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3. Do any four (4) of a–f. [20 = 4 × 5 each]

a. Find the Taylor series at a = 0 of f(x) =
1

x+ 1
.

b. Find the arc-length of the curve y = ln (cos(x)), where 0 ≤ x ≤ π

4
.

c. Suppose a0 = a1 = 1 and an = an−1 + an−2 for all n ≥ 2. Compute lim
n→∞

1

an
.

d. Find the area of the region between y = 1 and y = e−x for 0 ≤ x ≤ ln(2).

e. Determine the radius of convergence of the power series
∞∑
n=0

2n+1xn

4n + 1
.

f. Use the Right-Hand Rule or the Trapezoid Rule to approximate the definite

integral

∫ 1

0

sin(πx) dx to within 1 of the exact value.

Solutions. a. (Taylor’s Formula) We compute and evaluate derivatives of f(x) =
1

x+ 1
,

looking for patterns:

n 0 1 2 3 · · · n · · ·
f (n)(x) 1

x+1
−1

(x+1)2
2

(x+1)3
−6

(x+1)4 · · · (−1)nn!
(x+1)n+1 · · ·

f (n)(0) 1 −1 2 −6 · · · (−1)nn! · · ·

We plug what happens at n into Taylor’s Formula to obtain the Taylor series at a = 0 for

f(x) =
1

x+ 1
:

∞∑
n=0

f (n)(0)

n!
xn =

∞∑
n=0

(−1)nn!

n!
xn =

∞∑
n=0

(−1)nxn �

a. (Algebra) Recall the formula for the sum of a geometric series with first term a and
common ratio r, namely a + ar + ar2 + · · · = a

1−r . Applying this formula in reverse, we
see that:

f(x) =
1

x+ 1
=

1

1− (−x)
= 1 + (−x) + (−x)2 + (−x)3 + · · · =

∞∑
n=0

(−1)nxn

This must be the Taylor series of f(x) at a = 0 because whenever a function is actually
equal to a power series at a, that power series is the function’s Taylor series at a. �

b. We plug
dy

dx
=

d

dx
ln (cos(x)) =

1

cos(x)
· d
dx

cos(x) =
1

cos(x)
· (− sin(x)) = − tan(x) into
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the arc-length formula, with 0 ≤ x ≤ π

4
, and chug away:

arc-length =

∫ π/4

0

ds =

∫ π/4

0

√
1 +

(
dy

dx

)2

dx =

∫ π/4

0

√
1 + (− tan(x))

2
dx

=

∫ π/4

0

√
1 + tan2(x) dx =

∫ π/4

0

√
sec2(x) dx =

∫ π/4

0

sec(x) dx

= ln (sec(x) + tan(x))|π/40

= ln
(

sec
(π

4

)
+ tan

(π
4

))
− ln (sec(0) + tan(0))

= ln
(√

2 + 1
)
− ln(1 + 0) = ln

(√
2 + 1

)
�

c. Observe that an ≥ n for all n: a0 = 1 ≥ 0 and a1 = 1 ≥ by definition, a2 = a1 + a0 =
1 + 1 = 2 ≥ 2, and for n ≥ 3, if we already know that an−1 ≥ n − 1 and an−2 ≥ n − 2,
then an = an−1 + an−2 ≥ (n − 1) + (n − 2) = 2n − 3 ≥ n since n ≥ 3. It follows that

lim
n→∞

an ≥ lim
n→∞

n =∞, and thus that lim
n→∞

1

an
= 0. �

Note. The sequence an in c is the famous Fibonacci sequence. In fact, an → ∞ very

quickly: it turns out that an =

(
1 +
√

5
)n+1 −

(
1−
√

5
)n+1

2n+1
√

5
for n ≥ 0, so the series

actually grows exponentially.

d. e−x =
1

ex
≤ 1 when x ≥ 0, so the area between y = 1 and y = e−x for 0 ≤ x ≤ ln(2),

with the help of the substitution u = −x, with dx = (−1) du and
x 0 ln(2)
u 0 −ln(2)

, is:

A =

∫ ln(2)

0

(
1− e−x

)
dx =

∫ −ln(2)
0

(1− eu) (−1) du =

∫ 0

−ln(2)
(1− eu) du

= (u− eu)|0−ln(2) =
(
0− e0

)
−
(
−ln(2)− e−ln(2)

)
= −1 + ln(2) +

1

eln(2)

= −1 + ln(2) +
1

2
= ln(2)− 1

2
�

e. We will use the Ratio Test.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ 2
(n+1)+1xn+1

4n+1+1

2n+1xn

4n+1

∣∣∣∣∣ = lim
n→∞

∣∣∣∣2n+2xn+1

4n+1 + 1
· 4n + 1

2n+1xn

∣∣∣∣ = lim
n→∞

2|x| 4n + 1

4n+1 + 1

= 2|x| lim
n→∞

4n + 1

4n+1 + 1
·

1
4n+1

1
4n+1

= 2|x| lim
n→∞

1
4 + 1

4n+1

1 + 1
4n+1

= 2|x| ·
1
4 + 0

1 + 0

= 2|x| · 1

4
=
|x|
2
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By the Ratio Test, it follows that the series converges when
|x|
2
< 1, i.e. when |x| < 2,

and diverges when
|x|
2
> 1, i.e. when |x| > 2. Thus the radius of convergence of the power

series
∞∑
n=0

2n+1xn

4n + 1
is r = 2. �

f. (Right-Hand Rule)

∣∣∣∣ ddx sin(πx)

∣∣∣∣ = |π cos(πx)| = π |cos(πx)| ≤ π · 1 = π for all x, so

we may take M = π as an upper bound for

∣∣∣∣ ddx sin(πx)

∣∣∣∣ on [0.1]. Plugging this into the

formula for the upper bound on the error given by the Right-Hand Rule sum at n for the

integral

∫ 1

0

sin(πx) dx gives us
M(b− a)2

n
=
π(1− 0)2

n
=
π

n
. To make sure we get the

error to be at most 1, it then suffices to have
π

n
≤ 1, i.e. π ≤ n, and the least integer

n ≥ π is n = 4. It remains to compute the corresponding Right-Hand Rule sum:

∫ 1

0

sin(πx) dx ≈ b− a
n

4∑
i=1

f

(
a+ i

b− a
n

)
=

1− 0

4

4∑
i=1

sin

(
π

[
0 + i

1− 0

4

])

=
1

4

4∑
i=1

sin
(
i
π

4

)
=

1

4

[
sin
(π

4

)
+ sin

(
2π

4

)
+ sin

(
3π

4

)
+ sin

(
4π

4

)]

=
1

4

[
1√
2

+ 1 +
1√
2

+ 0

]
=

1

4

[
1 +

2√
2

]
=

1 +
√

2

4
≈ 0.604 �

f. (Trapezoid Rule) Since
d

dx
sin(πx) = π cos(πx), we have that

∣∣∣∣ d2dx2 sin(πx)

∣∣∣∣ =

∣∣∣∣ ddxπ cos(πx)

∣∣∣∣ = π2 |− sin(πx)| ≤ π2

for all x. We may therefore take M = π2 < 9.9 as an upper bound for

∣∣∣∣ d2dx2 sin(πx)

∣∣∣∣
on [0, 1]. Plugging this into the formula for the upper bound on the error given by the

Trapezoid Rule sum at n for the integral

∫ 1

0

sin(πx) dx gives us
M(b− a)3

12n2
=
π2(1− 0)3

12n2
=

π

12n2
. To make sure we get the error to be at most 1, it then suffices to have

π2

12n2
< 1,

i.e.
π2

12
< n2. As π2 < 9.9 < 12, it is enough to have that

π2

12
< 1 ≤ n2, and the least such
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positive integer is n = 1. It remains to compute the corresponding Trapezoid Rule sum:

∫ 1

0

sin(πx) dx ≈ b− a
n

n−1∑
i=0

f
(
a+ i b−an

)
+ f

(
a+ (i+ 1) b−an

)
2

=
1− 0

1

1−1∑
i=0

sin
(
π
[
0 + i 1−01

])
+ sin

(
π
[
0 + (i+ 1) 1−0

1

])
2

= 1 · sin(π · 0) + sin(π · 1)

2
=

0 + 0

2
= 0 �

Note. We leave it to the interested reader to check that

∫ 1

0

sin(πx)dx =
2

π
≈ 0.637,

which is indeed within 1 of both approximations obtained in the solutions to f above.
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4. Consider the finite region bounded by x = 0, y = 1, and y = x3.

a. Find the area of this region. [4]

b. Find the volume of the solid obtained by revolving the region about x = 0. [8]

Solutions. a. Here is a sketch of the region:

It is pretty easy to see that the region in question is the one below y = 1 and above
y = x3 for 0 ≤ x ≤ 1. It follows that the area of the region is:

Area =

∫ 1

0

(
1− x3

)
dx =

(
x− x4

4

)∣∣∣∣1
0

=

(
1− 14

4

)
−
(

0− 04

4

)
=

3

4
− 0 =

3

4
�

b. Here is a sketch of the solid obtained by revolving the region about x = 0, otherwise
known as the y-axis:

We will use the method of cylindrical shells. The shell at x has radius r = x− 0 = x
and height h = 1− x3. It follows that the volume of the solid of revolution is:

Volume =

∫ 1

0

2πrh dx =

∫ 1

0

2πx
(
1− x3

)
dx = 2π

∫ 1

0

(
x− x4

)
dx = 2π

(
x2

2
− x5

5

)∣∣∣∣1
0

= 2π

(
12

2
− 15

5

)
− 2π

(
02

2
− 05

5

)
= 2π · 3

10
− 2π · 0 =

3

5
π �

Note. If one were to instead use the disk method in the solution to b, one would have to
work in terms of y, and the disk at y would have radius r = x = y1/3.
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Part B. Do either one (1) of 5 or 6. [14]

5. A solid is obtained by revolving the triangle with vertices at (1, 0), (2, 0), and (2, 1)
about the y-axis..

a. Find the volume of the solid. [7]

b. Find the surface area of the solid. [7]

Solutions. For reference, here is a sketch of the solid of revolution:

Note that the line joining the points (1, 0) and (2, 1) has equation y = x− 1, the line
joining the points (1, 0) and (2, 0) has equation y = 0, and the line joining the points (2, 0)
and (2, 1) has equation x = 2. Also, note that 1 ≤ x ≤ 2 and 0 ≤ y ≤ 1 over the triangle.

a. We will use the method of cylindrical shells. The shell at x has radius r = x − 0 = x
and height h = (x− 1)− 0 = x− 1. It follows that the volume of the solid of revolution is:

Volume =

∫ 2

1

2πrh dx =

∫ 2

1

2πx (1− x) dx = 2π

∫ 2

1

(
x− x2

)
dx = 2π

(
x2

2
− x3

3

)∣∣∣∣2
1

= 2π

(
12

2
− 13

3

)
− 2π

(
02

2
− 03

3

)
= 2π · 1

6
− 2π · 0 =

π

3
�

Note. If one were to instead use the disk/washer method in the solution to a, one would
have to work in terms of y, and the washer at y would have outer radius R = 2 − 0 = 2
and inner radius r = x = y + 1.

b. The surface of this solid of revolution has three parts. First, the base, swept out by
the base of the triangle when it is revolved, is a washer with outer radius R = 2 − 0 = 2
and inner radius r = 1 − 0 = 1, and hence area π

(
R2 − r2

)
= π

(
22 − 12

)
= 3π. Second,

the outside, swept out by the vertical side of the triangle when it is revolved, is a cylinder
with radius r = 2− 0 = 2 and height h = 1− 0 = 1, and hence area 2πrh = 2π · 2 · 1 = 4π.
Finally, the remainder is the surface of revolution swept out by the hypotenuse of the
triangle, whose area we compute using the appropriate integral formula. Note that the
hypotenuse of the triangle is a the piece of the line y = x − 1 with 1 ≤ x ≤ 2, for which
dy

dx
=

d

dx
(x− 1) = 1. Also, note that the point at x on this piece of the line gets revolved

11



through a circle of radius r = x− 0 = x. It follows that the remainder has area:

Area =

∫ 2

1

2πr ds = 2π

∫ 2

1

x

√
1 +

(
dy

dx

)2

dx = 2π

∫ 2

1

x
√

1 + 12 dx = 2
√

2π

∫ 2

1

x dx

= 2
√

2π
x2

2

∣∣∣∣2
1

=
√

2πx2
∣∣∣2
1

=
√

2π · 22 −
√

2π · 12 = 3
√

2π

The total surface area of the solid of revolution is thus 3π+ 4π+ 3
√

2π =
(
7 + 3

√
2
)
π. �

6. Consider the region below y = x− 1 and above y = (x− 1)2. Find the volume of the
solid obtained by revolving this region about . . .

a. . . . the x-axis. [7]

b. . . . the y-axis. [7]

Solutions. For reference, here is a sketch of the region:

The line y = x − 1 and the parabola y = (x − 1)2 intersect when x − 1 = (x − 1)2,
which is only possible when x − 1 = 0, i.e. when x = 1 and y = 0, or when x − 1 = 1,
i.e. when x = 2 and y = 1. Note that y = x − 1 is above y = (x − 1)2 only for x values
between 1 and 2, and that the corresponding y values run from 0 to 1.

a. Here is a sketch of this solid of revolution:

12



We will use the disk/washer method. The washer at x for 1 ≤ x ≤ 2 has outer radius
R = (x − 1) − 0 = x − 1 and inner radius r = (x − 1)2 − 0 = (x − 1)2, and so has area
π
(
R2 − r2

)
= π

(
(x− 1)2 − (x− 1)4

)
. We will use the substitution u = x− 1, so du = dx

and
x 1 2
u 0 1

, to help compute the resulting volume integral.

Volume =

∫ 2

1

π
(
R2 − r2

)
dx = π

∫ 2

1

(
(x− 1)2 − (x− 1)4

)
dx = π

∫ 1

0

(
u2 − u4

)
du

= π

(
u3

3
− u5

5

)∣∣∣∣1
0

= π

(
13

3
− 15

5

)
− π

(
03

3
− 05

5

)
= π · 2

15
− π · 0 =

2

15
π �

b. Here is a sketch of this solid of revolution:

We will use the method of cylindrical shells. The shell at x for 1 ≤ x ≤ 2 has radius
r = x− 0 = x and height h = (x− 1)− (x− 1)2 = (x− 1)−

(
x2 − 2x− 1

)
= −x2 + 3x− 2,

and hence has area 2πrh = 2πx
(
−x2 + 3x− 2

)
= 2π

(
−x3 + 3x2 − 2x

)
. The volume of

this solid of revolution is then:

Volume =

∫ 2

1

2πrh dx = 2π

∫ 2

1

(
−x3 + 3x2 − 2x

)
dx = 2π

(
−x

4

4
+ 3

x3

3
− 2

x2

2

)∣∣∣∣2
1

= 2π

(
−x

4

4
+ x3 − x2

)∣∣∣∣2
1

= 2π

(
−24

4
+ 23 − 22

)
− 2π

(
−14

4
+ 13 − 12

)
= 2π · 0− 2π ·

(
−1

4

)
=
π

2
�
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Part C. Do either one (1) of 7 or 8. [14]

7. Use Taylor’s formula to find the Taylor series at a = 0 of f(x) = ex+1 and determine
its radius and interval of convergence.

Solution. We grind out the first few derivatives at a = 0 of f(x) = ex+1 = eex and look
for a pattern:

n 0 1 2 3 · · · n · · ·
f (n)(x) eex eex eex eex · · · eex · · ·
f (n)(0) e e e e · · · e · · ·

It should be obvious that f (n)(0) = e for all n ≥ 0, and so the Taylor series at a = 0 of

f(x) = ex+1 is
∞∑
n=0

f (n)(0)

n!
xn =

∞∑
n=0

e

n!
xn.

We apply the Ratio Test to discover this series’ radius of convergence:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣
e

(n+1)!x
n+1

e
n!x

n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣ exn+1

(n+ 1)!
· n!

exn

∣∣∣∣ = lim
n→∞

|x|
n+ 1

= 0 < 1

for any and all x ∈ R. It follows that the Taylor series converges for all x ∈ R, so its radius
of convergence is R =∞ and its interval of convergence is (−∞.∞). �

8. Find the Taylor series at a = 0 of f(x) =
x

1 + x2
and determine its radius and interval

of convergence.

Solution. We will use a little algebra to find a power series at a = 0 which is equal

to f(x) =
x

1 + x2
. Recall that the formula for the sum of the infinite geometric series

a+ar+ar2+ar3+· · · with first term a and common ratio r is
a

1− r
. It is then evindent that

f(x) =
x

1 + x2
=

x

1− (−x2)
is the sum of the infinite geometric series with first term a = x

and common ratio r = −x2, namely the power series x−x3+x5−x7+· · · =
∑
n=0

(−1)nx2n+1.

Since a geometric series converges exactly when |r| =
∣∣−x2∣∣ = x2 < 1 and diverges

otherwise, this series converges exactly when −1 < x < 1 and diverges otherwise. Thus
the radius of convergence of the series is 1 and its interval of convergence is (−1, 1). �

[Total = 100]
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Part D. Bonus problems! If you feel like it and have the time, do one or both of these.∨∨∨
. The longest straight line that can be drawn entirely on the surface of a perfectly flat

and circular road of some constant width is 50 m long. What is the surface area of
the road? [1]

Answer. 625π m2. You figure out why . . . :-) �∧∧∧
. Write a haiku (or several :-) touching on calculus or mathematics in general. [1]

What is a haiku?

seventeen in three:
five and seven and five of

syllables in lines

Solution. You’re on your own! �

Enjoy the rest of your summer!
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