Mathematics 1120H – Calculus I: Integrals and Series TRENT UNIVERSITY, Summer 2018 **Practice Final Examination**

Time: 3 hours.

Brought to you by Стефан Біланюк.

Instructions: Do parts A, B, and C, and, if you wish, part D. Show all your work and justify all your answers. If in doubt about something, ask!

Aids: Any calculator; (all sides of) one aid sheet; one (1) brain (no neuron limit).

Part A. Do all four (4) of 1-4.

1. Evaluate any four (4) of the integrals **a**-**f**. $[20 = 4 \times 5 \text{ each}]$

a.
$$\int z \cos(2z) dz$$
 b. $\int_0^1 t e^{-t^2} dt$ **c.** $\int \frac{x+1}{x^2+1} dx$
d. $\int_{-1}^1 \frac{1}{\sqrt{y^2+1}} dy$ **e.** $\int \frac{s^2}{s^2-1} ds$ **f.** $\int_0^{\pi/4} \frac{\sin^3(w)}{\cos^2(w)} dw$

2. Determine whether the series converges in any four (4) of \mathbf{a} -f. $[20 = 4 \times 5 \text{ each}]$

a.
$$\sum_{n=0}^{\infty} \frac{n^2}{2^n}$$
 b. $\sum_{m=1}^{\infty} \frac{\sin(m\pi)}{\ln(m\pi)}$ **c.** $\sum_{\ell=2}^{\infty} e^{-\ell^2}$
d. $\sum_{k=3}^{\infty} \frac{k! \cdot 2^k}{3^k}$ **e.** $\sum_{j=4}^{\infty} \frac{j^2 - j + 1}{\sqrt{j^5 + 13}}$ **f.** $\sum_{i=5}^{\infty} \cos(i\pi) \sqrt{\left(\frac{1}{2}\right)^i}$

3. Do any four (4) of **a**–**f**. $[20 = 4 \times 5 \text{ each}]$

- **a.** Use the Right-Hand Rule or the Trapezoid Rule to approximate $\int_{0}^{1} (1-x^2) dx$ to within $\frac{1}{2} = 0.5$ of the exact value.
- **b.** Find the area of the finite region between $y = x^2$ and y = x + 2.
- **c.** Suppose $a_1 = 1$ and $a_{n+1} = \frac{n+1}{n}a_n$. Compute $\lim_{n \to \infty} a_n$.
- **d.** Find the volume of the solid obtained by revolving the region below y = 2 and
- above y = 1, for $1 \le x \le 2$, about the y-axis. e. Suppose $\sigma(n) = \begin{cases} 1 & \text{if } n = 4k \text{ or } 4k + 1 \text{ for some integer } k \\ -1 & \text{if } n = 4k + 2 \text{ or } 4k + 3 \text{ for some integer } k \end{cases}$. What function has $\sum_{n=0}^{\infty} \frac{\sigma(n)x^n}{n!}$ as its Taylor series at a = 0?
- **f.** Find the Taylor series at a = 0 of $f(x) = e^{2x}$ and determine its interval of convergence.
- 4. Consider the region bounded by y = 0 and $y = \frac{1}{x}$ for $1 \le x < \infty$.
 - **a.** Find the area of this region. [4]
 - **b.** Find the volume of the solid obtained by revolving the region about the x-axis. [8]

Part B. Do either *one* (1) of **5** or **6**. *[14]*

- 5. Consider the piece of the parabola $y = \frac{1}{2}x^2$ for which $0 \le x \le 2$.
 - **a.** Find the arc-length of this piece. [9]
 - **b.** Find the area of the surface obtained by revolving this piece about the y-axis. [5]
- 6. The region below $y = -x^2 + 4x 3$ and above y = 0 for $1 \le x \le 3$ is revolved about the line x = -1. Find the volume of the resulting solid. [14]

Part C. Do either *one* (1) of **7** or **8**. *[14]*

- 7. Find the Taylor series at a = 0 of $f(x) = \frac{2}{x+2}$ and determine its radius and interval of convergence.
- 8. Find the Taylor series at a = 1 of $f(x) = \frac{2}{1+x}$ and determine its radius and interval of convergence.

|Total = 100|

- Part D. Bonus problems! If you feel like it and have the time, do one or both of these.
- $\Delta. \text{ What does the infinite product } 2\prod_{n=1}^{\infty} \left[\frac{2n}{2n-1} \cdot \frac{2n}{2n+1}\right] = 2 \cdot \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdot \frac{8}{7} \cdots$ amount to? [1]
- \Box . Write a haiku (or several :-) touching on calculus or mathematics in general. [1]

What is a haiku? seventeen in three: five and seven and five of syllables in lines

ENJOY THE REST OF YOUR SUMMER!