Mathematics 1120H - Calculus I: Integrals and Series

Trent University, Summer 2018
Practice Final Examination
Time: 3 hours.

Brought to you by Стефан Біланюк.

Instructions: Do parts A, B, and C, and, if you wish, part D. Show all your work and justify all your answers. If in doubt about something, ask!
Aids: Any calculator; (all sides of) one aid sheet; one (1) brain (no neuron limit).
Part A. Do all four (4) of 1-4.

1. Evaluate any four (4) of the integrals a-f. $[20=4 \times 5 \mathrm{each}]$
a. $\int z \cos (2 z) d z$
b. $\int_{0}^{1} t e^{-t^{2}} d t$
c. $\int \frac{x+1}{x^{2}+1} d x$
d. $\int_{-1}^{1} \frac{1}{\sqrt{y^{2}+1}} d y$
e. $\int \frac{s^{2}}{s^{2}-1} d s$
f. $\int_{0}^{\pi / 4} \frac{\sin ^{3}(w)}{\cos ^{2}(w)} d w$
2. Determine whether the series converges in any four (4) of $\mathbf{a}-\mathbf{f}$. [$20=4 \times 5 \mathrm{each}$]
a. $\sum_{n=0}^{\infty} \frac{n^{2}}{2^{n}}$
b. $\sum_{m=1}^{\infty} \frac{\sin (m \pi)}{\ln (m \pi)}$
c. $\sum_{\ell=2}^{\infty} e^{-\ell^{2}}$
d. $\sum_{k=3}^{\infty} \frac{k!\cdot 2^{k}}{3^{k}}$
e. $\sum_{j=4}^{\infty} \frac{j^{2}-j+1}{\sqrt{j^{5}+13}}$
f. $\sum_{i=5}^{\infty} \cos (i \pi) \sqrt{\left(\frac{1}{2}\right)^{i}}$
3. Do any four (4) of a-f. [$20=4 \times 5$ each]
a. Use the Right-Hand Rule or the Trapezoid Rule to approximate $\int_{0}^{1}\left(1-x^{2}\right) d x$ to within $\frac{1}{2}=0.5$ of the exact value.
b. Find the area of the finite region between $y=x^{2}$ and $y=x+2$.
c. Suppose $a_{1}=1$ and $a_{n+1}=\frac{n+1}{n} a_{n}$. Compute $\lim _{n \rightarrow \infty} a_{n}$.
d. Find the volume of the solid obtained by revolving the region below $y=2$ and above $y=1$, for $1 \leq x \leq 2$, about the y-axis.
e. Suppose $\sigma(n)=\left\{\begin{array}{cl}1 & \text { if } n=4 k \text { or } 4 k+1 \text { for some integer } k \\ -1 & \text { if } n=4 k+2 \text { or } 4 k+3 \text { for some integer } k\end{array}\right.$. What function has $\sum_{n=0}^{\infty} \frac{\sigma(n) x^{n}}{n!}$ as its Taylor series at $a=0$?
f. Find the Taylor series at $a=0$ of $f(x)=e^{2 x}$ and determine its interval of convergence.
4. Consider the region bounded by $y=0$ and $y=\frac{1}{x}$ for $1 \leq x<\infty$.
a. Find the area of this region. [4]
b. Find the volume of the solid obtained by revolving the region about the x-axis. [8]

Part B. Do either one (1) of $\mathbf{5}$ or $\mathbf{6}$. [14]
5. Consider the piece of the parabola $y=\frac{1}{2} x^{2}$ for which $0 \leq x \leq 2$.
a. Find the arc-length of this piece. [9]
b. Find the area of the surface obtained by revolving this piece about the y-axis. [5]
6. The region below $y=-x^{2}+4 x-3$ and above $y=0$ for $1 \leq x \leq 3$ is revolved about the line $x=-1$. Find the volume of the resulting solid. [14]

Part C. Do either one (1) of $\mathbf{7}$ or 8. [14]
7. Find the Taylor series at $a=0$ of $f(x)=\frac{2}{x+2}$ and determine its radius and interval of convergence.
8. Find the Taylor series at $a=1$ of $f(x)=\frac{2}{1+x}$ and determine its radius and interval of convergence.

$$
[\text { Total }=100]
$$

Part D. Bonus problems! If you feel like it and have the time, do one or both of these.
Δ. What does the infinite product $2 \prod_{n=1}^{\infty}\left[\frac{2 n}{2 n-1} \cdot \frac{2 n}{2 n+1}\right]=2 \cdot \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdot \frac{8}{7} \ldots$. amount to? [1]

ㅁ. Write a haiku (or several :-) touching on calculus or mathematics in general. [1]

What is a haiku?

seventeen in three:
five and seven and five of syllables in lines

Enjoy the rest of your summer!

