Mathematics 1120H - Calculus I: Integrals and Series

Trent University, Summer 2018

Solutions to the Practice Final Examination

Time: 3 hours.
Brought to you by Стефан Біланюк.
Instructions: Do parts A, B, and C, and, if you wish, part D. Show all your work and justify all your answers. If in doubt about something, ask!
Aids: Any calculator; (all sides of) one aid sheet; one (1) brain (no neuron limit).
Part A. Do all four (4) of 1-4.

1. Evaluate any four (4) of the integrals a-f. [$20=4 \times 5$ each]
a. $\int z \cos (2 z) d z$
b. $\int_{0}^{1} t e^{-t^{2}} d t$
c. $\int \frac{x+1}{x^{2}+1} d x$
d. $\int_{-1}^{1} \frac{1}{\sqrt{y^{2}+1}} d y$
e. $\int \frac{s^{2}}{s^{2}-1} d s$
f. $\int_{0}^{\pi / 4} \frac{\sin ^{3}(w)}{\cos ^{2}(w)} d w$

Solutions. a. We will use integration by parts with $u=z$ and $v^{\prime}=\cos (2 z)$, so $u^{\prime}=1$ and $v=\frac{1}{2} \sin (2 z)$.

$$
\begin{aligned}
\int z \cos (2 z) d z & =z \cdot \frac{1}{2} \sin (2 z)-\int 1 \cdot \frac{1}{2} \sin (2 z) d z=\frac{1}{2} z \sin (2 z)-\frac{1}{2}\left(-\frac{1}{2} \cos (2 z)\right)+C \\
& =\frac{1}{2} z \sin (2 z)+\frac{1}{4} \cos (2 z)+C \quad \square
\end{aligned}
$$

b. We wil use the substitution $u=-t^{2}$, so $d u=-2 t d t$ and $t d t=\left(-\frac{1}{2}\right) d u$, while $\begin{array}{lll}x & 0 & 1\end{array}$ $\begin{array}{lll}u & 0 & -1\end{array}$.

$$
\begin{aligned}
\int_{0}^{1} t e^{-t^{2}} d t & =\int_{0}^{-1} e^{u}\left(-\frac{1}{2}\right) d u=\frac{1}{2} \int_{-1}^{0} e^{u} d u \\
& =\left.\frac{1}{2} e^{u}\right|_{-1} ^{0}=\frac{1}{2} e^{0}-\frac{1}{2} e^{-1}=\frac{1}{2}\left(1-\frac{1}{e}\right)
\end{aligned}
$$

c. We will use a little cheap algebra and the substitution $w=x^{2}+1$, so $d w=2 x d x$ and $x d x=\frac{1}{2} d w$.

$$
\begin{aligned}
\int \frac{x+1}{x^{2}+1} d x & =\int \frac{x}{x^{2}+1} d x+\int \frac{1}{x^{2}+1} d x=\int \frac{1}{u} \cdot \frac{1}{2} d u+\arctan (x) \\
& =\frac{1}{2} \ln (u)+\arctan (x)+C=\frac{1}{2} \ln \left(x^{2}+1\right)+\arctan (x)+C
\end{aligned}
$$

d. We will use the trigonometric substitution $y=\tan (\theta)$, so $d y=\sec ^{2}(\theta) d \theta$ while $\begin{array}{ccc}y & -1 & 1 \\ \theta & -\pi / 4 & \pi / 4\end{array}$. We will also use the facts that $\sin \left(\frac{\pi}{4}\right)=\cos \left(\frac{\pi}{4}\right)=\cos \left(-\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$ and $\sin \left(-\frac{\pi}{4}\right)=-\frac{1}{\sqrt{2}}$, so that $\tan \left(\frac{\pi}{4}\right)=1, \tan \left(-\frac{\pi}{4}\right)=-1$, and $\sec \left(\frac{\pi}{4}\right)=\sec \left(-\frac{\pi}{4}\right)=\sqrt{2}$.

$$
\begin{aligned}
\int_{-1}^{1} \frac{1}{\sqrt{y^{2}+1}} d y & =\int_{-\pi / 4}^{\pi / 4} \frac{1}{\sqrt{\tan ^{2}(\theta)+1}} \sec ^{2}(\theta) d \theta=\int_{-\pi / 4}^{\pi / 4} \frac{1}{\sqrt{\sec ^{2}(\theta)}} \sec ^{2}(\theta) d \theta \\
& =\int_{-\pi / 4}^{\pi / 4} \sec (\theta) d \theta=\left.\ln (\sec (\theta)+\tan (\theta))\right|_{-\pi / 4} ^{\pi / 4} \\
& =\ln \left(\sec \left(\frac{\pi}{4}\right)+\tan \left(\frac{\pi}{4}\right)\right)-\ln \left(\sec \left(-\frac{\pi}{4}\right)+\tan \left(-\frac{\pi}{4}\right)\right) \\
& =\ln (\sqrt{2}+1)-\ln (\sqrt{2}-1)
\end{aligned}
$$

e. We will use a little algebra and partial fractions. First, note that:

$$
\frac{s^{2}}{s^{2}-1}=\frac{s^{2}-1+1}{s^{2}-1}=\frac{s^{2}-1}{s^{2}-1}+\frac{1}{s^{2}-1}=1+\frac{1}{(s-1)(s+1)}
$$

Second,

$$
\frac{1}{(s-1)(s+1)}=\frac{A}{s-1}+\frac{B}{s+1}=\frac{A(s+1)}{(s-1)(s+1)}+\frac{B(s-1}{(s-1)(s+1)}=\frac{(A+B) s+(A-B)}{(s-1)(s+1)}
$$

for some constants A and B. Since we must have $A+B=0$ and $A-B=1$, it follows from adding these two equations that $2 A=1$, i.e. $A=\frac{1}{2}$, and then substituting into either equation and solving for B gives $B=-\frac{1}{2}$. Thus:

$$
\begin{aligned}
\int \frac{s^{2}}{s^{2}-1} d s & =\int\left(1+\frac{1}{(s-1)(s+1)}\right) d s=\int 1 d s+\int \frac{1}{(s-1)(s+1)} d s \\
& =s+\int\left(\frac{\frac{1}{2}}{s-1}+\frac{-\frac{1}{2}}{s+1}\right) d s=s+\frac{1}{2} \int \frac{1}{s-1} d s-\frac{1}{2} \int \frac{1}{s+1} d s \\
& =s+\frac{1}{2} \ln (s-1)-\frac{1}{2} \ln (s+1)+C \quad \square
\end{aligned}
$$

f. We will use the trigonometric identity $\cos ^{2}(w)+\sin ^{2}(w)=1$, a bit of algebra, and the substitution $x=\cos (w)$, so $d x=-\sin (w) d w$ and $\sin (w) d w=(-1) d x$, while $\begin{array}{lll}w & 0 & \pi / 4 \\ x & 1 & \frac{1}{\sqrt{2}}\end{array}$.

$$
\begin{aligned}
\int_{0}^{\pi / 4} \frac{\sin ^{3}(w)}{\cos ^{2}(w)} d w & =\int_{0}^{\pi / 4} \frac{\left(1-\cos ^{2}(w)\right) \sin (w)}{\cos ^{2}(w)} d w=\int_{1}^{1 / \sqrt{2}} \frac{1-x^{2}}{x^{2}}(-1) d x \\
& =\int_{1 / \sqrt{2}}^{1}\left(x^{-2}-1\right) d x=\left.\left(-x^{-1}-x\right)\right|_{1 / \sqrt{2}} ^{1}=\left.\left(-\frac{1}{x}-x\right)\right|_{1 / \sqrt{2}} ^{1} \\
& =\left(-\frac{1}{1}-1\right)-\left(-\frac{1}{1 / \sqrt{2}}-\frac{1}{\sqrt{2}}\right)=-2+\sqrt{2}+\frac{1}{\sqrt{2}}
\end{aligned}
$$

2. Determine whether the series converges in any four (4) of a-f. [20 $=4 \times 5 \mathrm{each}]$
a. $\sum_{n=0}^{\infty} \frac{n^{2}}{2^{n}}$
b. $\sum_{m=1}^{\infty} \frac{\sin (m \pi)}{\ln (m \pi)}$
c. $\sum_{\ell=2}^{\infty} e^{-\ell^{2}}$
d. $\sum_{k=3}^{\infty} \frac{k!\cdot 2^{k}}{3^{k}}$
e. $\sum_{j=4}^{\infty} \frac{j^{2}-j+1}{\sqrt{j^{5}+13}}$
f. $\sum_{i=5}^{\infty} \cos (i \pi) \sqrt{\left(\frac{1}{2}\right)^{i}}$

Solutions. a. We will use the Ratio Test.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{\frac{(n+1)^{2}}{2^{n+1}}}{\frac{n^{2}}{2^{n}}}\right|=\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{2^{n+1}} \cdot \frac{2^{n}}{n^{2}}=\lim _{n \rightarrow \infty} \frac{n^{2}+2 n+1}{n^{2}} \cdot \frac{2^{n}}{2^{n+1}} \\
& =\lim _{n \rightarrow \infty}\left(1+\frac{2}{n}+\frac{1}{n^{2}}\right) \cdot \frac{1}{2}=(1+0+0) \cdot \frac{1}{2}=\frac{1}{2}<1
\end{aligned}
$$

It follows by the Ratio Test that $\sum_{n=0}^{\infty} \frac{n^{2}}{2^{n}}$ converges.
b. This is a bit of a trick question: $\sin (m \pi)=0$ for all integers m, so the series is just $\sum_{m=1}^{\infty} 0$, which certainly converges.
c. Since $0<\frac{1}{e}<1$ and $0<e^{-\ell^{2}}=\frac{1}{e^{\ell^{2}}}=\left(\frac{1}{e}\right)^{\ell^{2}}<\left(\frac{1}{e}\right)^{\ell}$ whenever $\ell \geq 2$, the given series converges by comparison with the geometric series $\sum_{\ell=2}^{\infty}\left(\frac{1}{e}\right)^{\ell}$.
d. We will use the Ratio Test. Since

$$
\begin{aligned}
\lim _{k \rightarrow \infty}\left|\frac{a_{k+1}}{a_{k}}\right| & =\lim _{k \rightarrow \infty}\left|\frac{\frac{(k+1)!\cdot 2^{k+1}}{3^{k+1}}}{\frac{k!2^{k}}{3^{k}}}\right|=\lim _{k \rightarrow \infty} \frac{(k+1)!\cdot 2^{k+1}}{3^{k+1}} \cdot \frac{3^{k}}{k!\cdot 2^{k}} \\
& =\lim _{k \rightarrow \infty} \frac{2(k+1)}{3}=\infty>1
\end{aligned}
$$

the given series does not converge.
e. Looking at the dominant terms in $\frac{j^{2}-j+1}{\sqrt{j^{5}+13}}$ suggests that the given series should converge, or not, as $\sum_{j=4}^{\infty} \frac{j^{2}}{\sqrt{j^{5}}}$ does. Since

$$
\lim _{j \rightarrow \infty} \frac{\frac{j^{2}-j+1}{\sqrt{j^{5}+13}}}{\frac{j^{2}}{\sqrt{j^{5}}}}=\lim _{j \rightarrow \infty} \frac{\left(j^{2}-j+1\right) / j^{2}}{\left(\sqrt{j^{5}+13}\right) / \sqrt{j^{5}}}=\lim _{j \rightarrow \infty} \frac{1-\frac{1}{j}+\frac{1}{j^{2}}}{\sqrt{1+\frac{13}{j^{5}}}}=\frac{1-0+0}{\sqrt{1+0}}=\frac{1}{1}=1
$$

the Limit Comparison Test tells us that $\sum_{j=4}^{\infty} \frac{j^{2}-j+1}{\sqrt{j^{5}+13}}$ and $\sum_{j=4}^{\infty} \frac{j^{2}}{\sqrt{j^{5}}}$ do indeed both converge or both diverge. Since $\sum_{j=4}^{\infty} \frac{j^{2}}{\sqrt{j^{5}}}=\sum_{j=4}^{\infty} \frac{j^{2}}{j^{5 / 2}}=\sum_{j=4}^{\infty} \frac{1}{j^{1 / 2}}$ diverges by the p-Test, as $p=\frac{1}{2}-0=\frac{1}{2} \leq 1$, this means that $\sum_{j=4}^{\infty} \frac{j^{2}-j+1}{\sqrt{j^{5}+13}}$ also diverges.
f. $\sum_{i=5}^{\infty} \cos (i \pi) \sqrt{\left(\frac{1}{2}\right)^{i}}=\sum_{i=5}^{\infty}(-1)^{i}\left(\frac{1}{\sqrt{2}}\right)^{i}=\sum_{i=5}^{\infty}\left(-\frac{1}{\sqrt{2}}\right)^{i}$ converges because it is a geometric series with common ratio $r=-\frac{1}{\sqrt{2}}$ and $|r|=\frac{1}{\sqrt{2}}<1$.
3. Do any four (4) of a-f. [$20=4 \times 5$ each]
a. Use the Right-Hand Rule or the Trapezoid Rule to approximate $\int_{0}^{1}\left(1-x^{2}\right) d x$ to within $\frac{1}{2}=0.5$ of the exact value.
b. Find the area of the finite region between $y=x^{2}$ and $y=x+2$.
c. Suppose $a_{1}=1$ and $a_{n+1}=\frac{n+1}{n} a_{n}$. Compute $\lim _{n \rightarrow \infty} a_{n}$.
d. Find the volume of the solid obtained by revolving the region below $y=2$ and above $y=1$, for $1 \leq x \leq 2$, about the y-axis.
e. Suppose $\sigma(n)=\left\{\begin{array}{cl}1 & \text { if } n=4 k \text { or } 4 k+1 \text { for some integer } k \\ -1 & \text { if } n=4 k+2 \text { or } 4 k+3 \text { for some integer } k\end{array}\right.$. What function has $\sum_{n=0}^{\infty} \frac{\sigma(n) x^{n}}{n!}$ as its Taylor series at $a=0$?
f. Find the Taylor series at $a=0$ of $f(x)=e^{2 x}$ and determine its interval of convergence.

Solutions. a. (Right-Hand Rule) Let $f(x)=1-x^{2}$; then $f^{\prime}(x)=-2 x$ and it is easy to see that $\left|f^{\prime}(x)\right|=|-2 x|=2|x| \leq 2$ for all $x \in[0,1]$. We know from class that the difference between the Right-Hand Rule sum for n and the definite integral $\int_{a}^{b} f(x) d x$ it approximates is at most $M(b-a)^{2} / n$, where M is an upper bound for $\left|f^{\prime}(x)\right|$ for $x \in[a, b]$. In this case $a=0, b=1$, and we can let $M=2$. We need to choose n to ensure that $2(1-0)^{2} / n=2 / n \leq 0.5$, which is equivalent to asking that $n \geq 2 / 0.5=4$. The Right-Hand

Rule sum for $\int_{0}^{1}\left(1-x^{2}\right) d x$ with $n=4$ is:

$$
\begin{aligned}
\sum_{i=1}^{4} \frac{1-0}{4} f\left(0+i \frac{1-0}{4}\right) & =\frac{1}{4} \sum_{i=1}^{4} f\left(\frac{i}{4}\right)=\frac{1}{4} \sum_{i=1}^{4}\left(1-\left(\frac{i}{4}\right)^{2}\right) \\
& =\frac{1}{4}\left[\left(1-\frac{1}{16}\right)+\left(1-\frac{4}{16}\right)+\left(1-\frac{9}{16}\right)+\left(1-\frac{16}{16}\right)\right] \\
& =\frac{1}{4}\left[\frac{15}{16}+\frac{12}{16}+\frac{7}{16}+0\right]=\frac{1}{4} \cdot \frac{34}{16}=\frac{17}{32}
\end{aligned}
$$

a. (Trapezoid Rule) Let $f(x)=1-x^{2}$; then $f^{\prime}(x)=-2 x$ and $f^{\prime \prime}(x)=-2$. It is easy to see that $\left|f^{\prime \prime}(x)\right|=|-2|=2$ for all $x \in[0,1]$. We know from class and the textbook that the difference between the Trapezoid Rule sum for n and the definite integral $\int_{a}^{b} f(x) d x$ it approximates is at most $\frac{M(b-a)^{3}}{n^{2}}$, where M is an upper bound for $\left|f^{\prime}(x)\right|$ for $x \in[a, b]$. In this case $a=0, b=1$, and we can let $M=2$. We need to choose n to ensure that $2(1-0)^{3} / n^{2}=2 / n^{2} \leq 0.5$, which is equivalent to asking that $n^{2} \geq 2 / 0.5=4$, i.e. that $n \geq 2$. The Trapezoid Rule sum for $\int_{0}^{1}\left(1-x^{2}\right) d x$ with $n=2$ is:

$$
\begin{aligned}
& \frac{1-0}{2}\left[\frac{1}{2} f\left(0+0 \frac{1-0}{2}\right)+f\left(0+1 \frac{1-0}{2}\right)+\frac{1}{2} f\left(0+2 \frac{1-0}{2}\right)\right] \\
= & \frac{1}{2}\left[\frac{1}{2} f(0)+f\left(\frac{1}{2}\right)+\frac{1}{2} f(1)\right]=\frac{1}{2}\left[\frac{1}{2}\left(1-0^{2}\right)+\left(1-\left(\frac{1}{2}\right)^{2}\right)+\frac{1}{2}\left(1-1^{2}\right)\right] \\
= & \frac{1}{2}\left[\frac{1}{2}+\frac{3}{4}+0\right]=\frac{1}{2} \cdot \frac{5}{4}=\frac{5}{8}
\end{aligned}
$$

Note. Both of the values obtained above, $\frac{17}{32}$ using the Right-Hand Rule and $\frac{5}{8}$ using the Trapezoid Rule, are within 0.5 of the correct value of $\frac{2}{3}$ for $\int_{0}^{1}\left(1-x^{2}\right) d x$.
b. We first need to find out where $y=x^{2}$ and $y=x+2$ cross. If $x^{2}=y=x+2$, then $0=x^{2}-x-2=(x+1)(x-2)$, so $x=-1$ or $x=2$. By comparing y values at $x=0$, $0^{2}=0<2=0+2$, we can see that $y=x+2$ is above $y=x^{2}$ for $-1<x<2$. It follows that the area of the region is:

$$
\begin{aligned}
\text { Area } & =\int_{-1}^{2}\left(x+2-x^{2}\right) d x=\left.\left(\frac{1}{2} x^{2}+2 x-\frac{1}{3} x^{3}\right)\right|_{-1} ^{2} \\
& =\left(\frac{1}{2} 2^{2}+2 \cdot 2-\frac{1}{3} 2^{3}\right)-\left(\frac{1}{2}(-1)^{2}+2(-1)-\frac{1}{3}(-1)^{3}\right) \\
& =\frac{10}{3}-\left(-\frac{7}{6}\right)=\frac{27}{6}=\frac{9}{2}
\end{aligned}
$$

c. Observe that if $n>1$, then $a_{n}=\frac{n}{n-1} a_{n-1}=\frac{n}{n-1} \cdot \frac{n-1}{n-2} a_{n-2}=\frac{n}{n-2} a_{n-2}=$ $\frac{n}{n-2} \cdot \frac{n-2}{n-3} a_{n-3}=\frac{n}{n-3} a_{n-3}=\cdots=\frac{n}{1} a_{1}=\frac{n}{1} \cdot 1=n$. Thus $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} n=\infty$.
d. (Washers) We are revolving the region about the y-axis, so if we use the disk/washer method to compute the volume, we should use y as the fundamental variable. In this case, $1 \leq y \leq 2$ for our region; the outside radius of the washer at y is the distance between the y-axis and the line $x=2, R=2$, and the inside radius of the washer at y is the distance between the y-axis and the line $x=1, r=1$. The washer at y thus has area $\pi R^{2}-\pi r^{2}=\pi 2^{2}-\pi 1^{2}=4 n-\pi=3 \pi$. It follows that the volume of the solid is:

$$
\mathrm{V}=\int_{1}^{2} A(y) d y=\int_{1}^{2} 3 \pi d y=\left.3 \pi y\right|_{1} ^{2}=3 \pi \cdot 2-3 \pi \cdot 1=3 \pi
$$

d. (Shells) We are revolving the region about the y-axis, so if we use the cylindrical shell method to compute the volume, we should use x as the fundamental variable. In this case, $1 \leq x \leq 2$ for our region; since we are rotating the region about the y-axis, the radius of the cylindrical shell at x is just $r=x$, and its height is the distance between $y=2$ and $y=1$, namely $h=2-1=1$. The shell at x thus has area $A(x)=2 \pi r h=2 \pi x \cdot 1=2 \pi x$. It follows that the volume of the solid is:

$$
\mathrm{V}=\int_{1}^{2} A(x) d x=\int_{1}^{2} 2 \pi x d y=\left.\pi x^{2}\right|_{1} ^{2}=\pi 2^{2}-\pi 1^{2}=3 \pi
$$

d. (Geometry) The solid in question is a cylinder of height 1 and radius 2 with a cylinder of height 1 and radius 1 cut out from it. The volume of a cylinder of height h are radius r is $\pi r^{2} h$, so the volume of the given shape is $\pi 2^{2} 1-\pi 1^{2} 1=4 \pi-\pi=3 \pi$.
e. Note that the given series converges absolutely for all x by the Ratio Test because

$$
\lim _{n \rightarrow \infty}\left|\frac{a^{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\frac{\sigma(n+1) x^{n+1}}{(n+1)!}}{\frac{\sigma(n) x^{n}}{n!}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\sigma(n+1) x^{n+1}}{(n+1)!} \cdot \frac{n!}{\sigma(n) x^{n}}\right|=\lim _{n \rightarrow \infty} \frac{|x|}{n+1}=0<1
$$

since $|\sigma(n)|=1$ for all n. It follows that the series may be freely rearranged without altering the sum for any value of x. We will regroup this series according to whether n is even or odd:

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{\sigma(n) x^{n}}{n!} & =\frac{x^{0}}{0!}+\frac{x^{1}}{1!}-\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}-\frac{x^{6}}{6!}-\frac{x^{7}}{7!}+\cdots \\
& =\left(\frac{x^{0}}{0!}-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots\right)+\left(\frac{x^{1}}{1!}-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots\right)
\end{aligned}
$$

Since $\frac{x^{0}}{0!}-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots$ is the Taylor series at $a=0$ of $\cos (x)$ and $\frac{x^{1}}{1!}-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-$ $\frac{x^{7}}{7!}+\cdots$ is the Taylor series at $a=0$ of $\sin (x)$, the given series is the Taylor series at $a=0$ of $f(x)=\cos (x)+\sin (x)$.
f. (Brute Force) The Taylor series at a of $f(x)$ is the power series $\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}$, where $f^{(n)}(x)$ denotes the nth derivative of $f(x)$ for $n \geq 1$ and $f^{(0)}(x)=f(x)$. We will grind out the first several derivatives of $f(x)=e^{2 x}$ at $a=0$ and look for a pattern we can plug into Taylor's formula:

$$
\begin{array}{ccccccc}
n & 0 & 1 & 2 & 3 & 4 & \cdots \\
f^{(n)}(x) & e^{2 x} & 2 e^{2 x} & 2^{2} e^{2 x} & 2^{3} e^{2 x} & 2^{4} e^{2 x} & \cdots \\
f^{(n)}(0) & 1 & 2 & 2^{2} & 2^{3} & 2^{4} & \cdots
\end{array}
$$

It's pretty obvious that $f^{(n)}(0)=2^{n}$ for all $n \geq 0$. (The paranoid may verify this with an argument by induction.) It now follows that the Taylor series at $a=0$ of $f(x)=e^{2 x}$ is $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}(x-0)^{n}=\sum_{n=0}^{\infty} \frac{2^{n}}{n!} x^{n}$.
f. (Algebra) The Taylor series at $a=0$ of e^{x} is $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$. To get the Taylor series at $a=0$ of $e^{2 x}$, we simply plug in $2 x$ for x in this series to get $\sum_{n=0}^{\infty} \frac{(2 x)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{2^{n}}{n!} x^{n}$.
4. Consider the region bounded by $y=0$ and $y=\frac{1}{x}$ for $1 \leq x<\infty$.
a. Find the area of this region. [4]
b. Find the volume of the solid obtained by revolving the region about the x-axis. [8]

Solutions. a. Since $\frac{1}{x}>0$ for all $x \geq 1$, the area of the region is:

$$
\mathrm{A}=\int_{1}^{\infty} \frac{1}{x} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x} d x=\left.\lim _{t \rightarrow \infty} \ln (x)\right|_{1} ^{t}=\lim _{t \rightarrow \infty}(\ln (t)-\ln (1))=\infty-0=\infty
$$

b. We will use the disk method, so, since the region is revolved about the x-axis, we work in terms of x. The disk at x has radius $r=\frac{1}{x}-0=\frac{1}{x}$ and so has area $A(x)=\pi r^{2}=$ $\pi\left(\frac{1}{x}\right)^{2}=\frac{\pi}{x^{2}}$. Thus the volume of the solid is:

$$
\begin{aligned}
\mathrm{V} & =\int_{1}^{\infty} A(x) d x=\int_{1}^{\infty} \frac{\pi}{x^{2}} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{\pi}{x^{2}} d x=\lim _{t \rightarrow \infty}-\left.\frac{\pi}{x}\right|_{1} ^{t} \\
& =\lim _{t \rightarrow \infty}\left[\left(-\frac{\pi}{t}\right)-\left(-\frac{\pi}{1}\right)\right]=\lim _{t \rightarrow \infty}\left[\frac{p i}{-} \frac{\pi}{t}\right]=\pi-0=\pi
\end{aligned}
$$

Part B. Do either one (1) of $\mathbf{5}$ or $\mathbf{6}$. [14]
5. Consider the piece of the parabola $y=\frac{1}{2} x^{2}$ for which $0 \leq x \leq 2$.
a. Find the arc-length of this piece. [9]
b. Find the area of the surface obtained by revolving this piece about the y-axis. [5]

Solutions. a. First, $\frac{d y}{d x}=\frac{d}{d x}\left(\frac{1}{2} x^{2}\right)=\frac{1}{2} \cdot 2 x=x$. We will use the trigonometric substitution $x=\tan (\theta)$, so $d x=\sec ^{2}(\theta) d \theta$, as well as the reduction formula $\int \sec ^{3}(\theta) d \theta=$ $\frac{1}{2} \sec (\theta) \tan (\theta)+\frac{1}{2} \int \sec (\theta) d \theta$, to deal with the arc-length integral:

$$
\begin{aligned}
\text { arc-length } & =\int_{0}^{2} s=\int_{0}^{2} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{0}^{2} \sqrt{1+x^{2}} d x \\
& =\int_{x=0}^{x=2} \sqrt{1+\tan ^{2}(\theta)} \sec ^{2}(\theta) d \theta=\int_{x=0}^{x=2} \sec ^{3}(\theta) d \theta \\
& =\left.\frac{1}{2} \sec (\theta) \tan (\theta)\right|_{x=0} ^{x=2}+\frac{1}{2} \int_{x=0}^{x=2} \sec (\theta) d \theta \\
& =\left.\frac{1}{2} x \sqrt{1+x^{2}}\right|_{0} ^{2}+\left.\frac{1}{2} \ln (\tan (\theta)+\sec (\theta))\right|_{x=0} ^{x=2} \\
& =\frac{1}{2} \cdot 2 \sqrt{5}-\frac{1}{2} \cdot 0 \sqrt{1}+\left.\ln \left(x+\sqrt{1+x^{2}}\right)\right|_{0} ^{2} \\
& =\sqrt{5}+\ln (2+\sqrt{5})-\ln (0+\sqrt{1})=\sqrt{5}+\ln (2+\sqrt{5})
\end{aligned}
$$

b. As above, we have $\frac{d y}{d x}=x$. Since we are revolving the curve about the y-axis, the point on the curve at x gets revolved through a circle of radius $r=x-0=x$. We will use the substitution $u=1+x^{2}$, so $d u=2 x d x$ and $\begin{array}{ccc}x & 0 & 2 \\ u & 1 & 5\end{array}$, to deal with the resulting integral for the area of the surface of revolution.

$$
\begin{aligned}
\mathrm{SA} & =\int_{0}^{2} 2 \pi r d s=\int_{0}^{2} 2 \pi x \sqrt{1+x^{2}} d x=\int_{1}^{5} \pi \sqrt{u} d u=\int_{1}^{5} \pi u^{1 / 2} d u=\left.\frac{2}{3} \pi u^{3 / 2}\right|_{1} ^{5} \\
& =\frac{2}{3} \pi \cdot 5^{3 / 2}-\frac{2}{3} \pi \cdot 1^{3 / 2}=\frac{10 \sqrt{5}}{3} \pi-\frac{2}{3} \pi=\frac{10 \sqrt{5}-2}{3} \pi
\end{aligned}
$$

6. The region below $y=-x^{2}+4 x-3$ and above $y=0$ for $1 \leq x \leq 3$ is revolved about the line $x=-1$. Find the volume of the resulting solid. [14]
Solution. We will use the method of cylindrical shells to find the volume. (One could use the disk/washer method, but there would be substantial overhead in terms of algebraic complexity in this case.) Since we are revolving about a vertical line and using shells,
we will work in terms of x. The shell at x has radius $r=x-(-1)=x+1$ and height $h=y-0=-x^{2}+4 x-3$, and hence area $A(x)=2 \pi r h=2 \pi(x+1)\left(-x^{2}+4 x-3\right)=$ $2 \pi\left(-x^{3}+3 x^{2}+x-3\right)$. The volume of the solid of revolution is then given by:

$$
\begin{aligned}
\mathrm{V} & =\int_{1}^{3} A(x) d x=2 \pi \int_{1}^{3}\left(-x^{3}+3 x^{2}+x-3\right) d x=\left.2 \pi\left(-\frac{1}{4} x^{4}+x^{3}+\frac{1}{2} x^{2}-3 x\right)\right|_{1} ^{3} \\
& =2 \pi\left(-\frac{1}{4} \cdot 3^{4}+3^{3}+\frac{1}{2} \cdot 3^{2}-3 \cdot 3\right)-2 \pi\left(-\frac{1}{4} \cdot 0^{4}+0^{3}+\frac{1}{2} \cdot 0^{2}-3 \cdot 0\right) \\
& =2 \pi\left(-\frac{81}{4}+27+\frac{9}{2}-9\right)-2 \pi \cdot 0=2 \pi \cdot \frac{9}{4}=\frac{9}{2} \pi
\end{aligned}
$$

Part C. Do either one (1) of $\mathbf{7}$ or 8. [14]
7. Find the Taylor series at $a=0$ of $f(x)=\frac{2}{x+2}$ and determine its radius and interval of convergence.
Solution. (Brute Force) The Taylor series at a of $f(x)$ is the power series $\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-$ $a)^{n}$, where $f^{(n)}(x)$ denotes the nth derivative of $f(x)$ for $n \geq 1$ and $f^{(0)}(x)=f(x)$. We will grind out the first several derivatives of $f(x)=\frac{2}{x+2}$ at $a=0$ and look for a pattern we can plug into Taylor's formula:

$$
\begin{array}{ccccccc}
n & 0 & 1 & 2 & 3 & 4 & \cdots \\
f^{(n)}(x) & \frac{2}{x+2} & -\frac{2}{(x+2)^{2}} & \frac{4}{(x+2)^{3}} & -\frac{12}{(x+2)^{4}} & \cdots & \\
f^{(n)}(0) & 1 & -\frac{1}{2} & \frac{1}{2} & -\frac{3}{4} & \cdots &
\end{array}
$$

A little reflection about what's going on in the second line of the table tells us that $f^{(n)}(x)=\frac{2 \cdot(-1)^{n} \cdot n!}{(x+2)^{n+1}}$. It follows that $f^{(n)}(0)=\frac{2 \cdot(-1)^{n} \cdot n!}{(0+2)^{n+1}}=\frac{(-1)^{n} n!}{2^{n}}$, and so the Taylor series at $a=0$ of $f(x)=\frac{2}{x+2}$ is:

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n} n!}{2^{n}} \cdot \frac{(x-0)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n}} x^{n}
$$

It remains to determine the radius and interval of convergence of this series. Just for kicks, we'll use the Root Test, though the Ratio Test works equally well here:

$$
\lim _{n \rightarrow i n f t y}\left|\frac{(-1)^{n}}{2^{n}} x^{n}\right|^{1 / n}=\lim _{n \rightarrow \text { infty }}\left(\left|\frac{x}{2}\right|^{n}\right)^{1 / n}=\lim _{n \rightarrow i n f t y}\left|\frac{x}{2}\right|=\frac{|x|}{2}
$$

Since $\frac{|x|}{2}<1$ exactly when $|x|<2$, the Root tells us tells us that radius of convergence of the Taylor series is 2 .

To finish sorting out the interval of convergence, we check what happens at the endpoints, $x=-2$ and $x=2$. When $x=-2$, the series becomes $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n}}(-2)^{n}=$ $\sum_{n=0}^{\infty} \frac{(-1)^{n}(-1)^{n} 2^{n}}{2^{n}} \sum_{n=0}^{\infty}(-1)^{2 n}=\sum_{n=0}^{\infty} 1$, which diverges by the Divergence Test because $\lim _{n \rightarrow \infty} 1=1 \neq 0$. Similarly, when $x=2$, the series becomes $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n}} 2^{n}=\sum_{n=0}^{\infty}(-1)^{n}$, which diverges by the Divergence Test because $\lim _{n \rightarrow \infty}(-1)^{n}$ fails to exist, much less equal 0 . It follows that the interval of convergence of the Taylor series is $(-2,2)$.
Solution. (Algebra) $f(x)=\frac{2}{x+2}$ looks somewhat similar to the formula for the sum of a geometric series, which is $\frac{a}{1-r}$ for the geometric series that has first term a and common ratio r (where we ned to have $|r|<1$ for this to work). We will do a bit of algebra to the defining formula for $f(x)$ to put it in the form of a sum for a geometric series:

$$
f(x)=\frac{2}{2+x}=\frac{2}{2+x} \cdot \frac{\frac{1}{2}}{\frac{1}{2}}=\frac{\frac{2}{2}}{\frac{2}{2}+\frac{x}{2}}=\frac{1}{1+\frac{x}{2}}=\frac{1}{1-\left(-\frac{x}{2}\right)}
$$

Thus $f(x)$ is the sum of a geometric series with first term 1 and common ratio $-\frac{x}{2}$, so $\sum_{n=0}^{\infty}\left(-\frac{x}{2}\right)^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{2^{n}}$, which must be the Taylor series of the function since every power series is its own Taylor series. Note that this geometric series converges exactly when the common ratio satisfies $\left|-\frac{x}{2}\right|=\frac{|x|}{2}<1$, i.e. exactly when $|x|<2$. It follows that the radius of convergence of the series is 2 and the interval of convergence is $(-2,2)$.
8. Find the Taylor series at $a=1$ of $f(x)=\frac{2}{1+x}$ and determine its radius and interval of convergence.
Solution. Either solution to 7 can be executed here with only minor changes because $f(x)=\frac{2}{1+x}=\frac{2}{2+(x-1)}$, which is the same function that we have in 7 , except with $x-1$ plugged in for x. The radius of convergence is also 2 , and the interval of convergence is $(-2+1,2+1)=(-1,3)$ (i.e. the open interval of width 2 centered at 1 instead of 0$)$.

$$
[\text { Total }=100]
$$

Part D. Bonus problems! If you feel like it and have the time, do one or both of these.
Δ. What does the infinite product $2 \prod_{n=1}^{\infty}\left[\frac{2 n}{2 n-1} \cdot \frac{2 n}{2 n+1}\right]=2 \cdot \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdot \frac{8}{7} \ldots$. amount to? [1]

Solution. This product, discovered by John Wallis (1616-1703), equals π. Takes a bit of work to prove that mind you ... :-)
․ Write a haiku (or several :-) touching on calculus or mathematics in general. [1]

What is a haiku?

seventeen in three:
five and seven and five of syllables in lines

Solution. You're on your own!
Enjoy the rest of your summer!

