
Mathematics 1120H – Calculus I: Integrals and Series
Trent University, Summer 2018

Solutions to the Practice Final Examination

Time: 3 hours. Brought to you by Stefan B�lan�k.

Instructions: Do parts A, B, and C, and, if you wish, part D. Show all your work and
justify all your answers. If in doubt about something, ask!

Aids: Any calculator; (all sides of) one aid sheet; one (1) brain (no neuron limit).

Part A. Do all four (4) of 1–4.

1. Evaluate any four (4) of the integrals a–f. [20 = 4 × 5 each]

a.

∫
z cos(2z) dz b.

∫ 1

0

te−t
2

dt c.

∫
x+ 1

x2 + 1
dx

d.

∫ 1

−1

1√
y2 + 1

dy e.

∫
s2

s2 − 1
ds f.

∫ π/4

0

sin3(w)

cos2(w)
dw

Solutions. a. We will use integration by parts with u = z and v′ = cos(2z), so u′ = 1
and v = 1

2 sin(2z).

∫
z cos(2z) dz = z · 1

2
sin(2z)−

∫
1 · 1

2
sin(2z) dz =

1

2
z sin(2z)− 1

2

(
−1

2
cos(2z)

)
+ C

=
1

2
z sin(2z) +

1

4
cos(2z) + C �

b. We wil use the substitution u = −t2, so du = −2t dt and t dt =
(
− 1

2

)
du, while

x 0 1
u 0 −1

.

∫ 1

0

te−t
2

dt =

∫ −1
0

eu
(
−1

2

)
du =

1

2

∫ 0

−1
eu du

=
1

2
eu
∣∣∣∣0
−1

=
1

2
e0 − 1

2
e−1 =

1

2

(
1− 1

e

)
�

c. We will use a little cheap algebra and the substitution w = x2 + 1, so dw = 2x dx and
x dx = 1

2 dw.∫
x+ 1

x2 + 1
dx =

∫
x

x2 + 1
dx+

∫
1

x2 + 1
dx =

∫
1

u
· 1

2
du+ arctan(x)

=
1

2
ln(u) + arctan(x) + C =

1

2
ln
(
x2 + 1

)
+ arctan(x) + C �
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d. We will use the trigonometric substitution y = tan(θ), so dy = sec2(θ) dθ while
y −1 1
θ −π/4 π/4

. We will also use the facts that sin
(
π
4

)
= cos

(
π
4

)
= cos

(
−π4
)

= 1√
2

and sin
(
−π4
)

= − 1√
2
, so that tan

(
π
4

)
= 1, tan

(
−π4
)

= −1, and sec
(
π
4

)
= sec

(
−π4
)

=
√

2.∫ 1

−1

1√
y2 + 1

dy =

∫ π/4

−π/4

1√
tan2(θ) + 1

sec2(θ) dθ =

∫ π/4

−π/4

1√
sec2(θ)

sec2(θ) dθ

=

∫ π/4

−π/4
sec(θ) dθ = ln (sec(θ) + tan(θ))|π/4−π/4

= ln
(

sec
(π

4

)
+ tan

(π
4

))
− ln

(
sec
(
−π

4

)
+ tan

(
−π

4

))
= ln

(√
2 + 1

)
− ln

(√
2− 1

)
�

e. We will use a little algebra and partial fractions. First, note that:

s2

s2 − 1
=
s2 − 1 + 1

s2 − 1
=
s2 − 1

s2 − 1
+

1

s2 − 1
= 1 +

1

(s− 1)(s+ 1)

Second,

1

(s− 1)(s+ 1)
=

A

s− 1
+

B

s+ 1
=

A(s+ 1)

(s− 1)(s+ 1)
+

B(s− 1

(s− 1)(s+ 1)
=

(A+B)s+ (A−B)

(s− 1)(s+ 1)

for some constants A and B. Since we must have A+B = 0 and A−B = 1, it follows from
adding these two equations that 2A = 1, i.e. A = 1

2 , and then substituting into either
equation and solving for B gives B = − 1

2 . Thus:∫
s2

s2 − 1
ds =

∫ (
1 +

1

(s− 1)(s+ 1)

)
ds =

∫
1 ds+

∫
1

(s− 1)(s+ 1)
ds

= s+

∫ ( 1
2

s− 1
+
− 1

2

s+ 1

)
ds = s+

1

2

∫
1

s− 1
ds− 1

2

∫
1

s+ 1
ds

= s+
1

2
ln(s− 1)− 1

2
ln(s+ 1) + C �

f. We will use the trigonometric identity cos2(w) + sin2(w) = 1, a bit of algebra, and the

substitution x = cos(w), so dx = − sin(w) dw and sin(w) dw = (−1) dx, while
w 0 π/4
x 1 1√

2

.

∫ π/4

0

sin3(w)

cos2(w)
dw =

∫ π/4

0

(
1− cos2(w)

)
sin(w)

cos2(w)
dw =

∫ 1/
√
2

1

1− x2

x2
(−1) dx

=

∫ 1

1/
√
2

(
x−2 − 1

)
dx =

(
−x−1 − x

)∣∣1
1/
√
2

=

(
− 1

x
− x
)∣∣∣∣1

1/
√
2

=

(
−1

1
− 1

)
−
(
− 1

1/
√

2
− 1√

2

)
= −2 +

√
2 +

1√
2
�
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2. Determine whether the series converges in any four (4) of a–f. [20 = 4 × 5 each]

a.

∞∑
n=0

n2

2n
b.

∞∑
m=1

sin(mπ)

ln(mπ)
c.

∞∑
`=2

e−`
2

d.

∞∑
k=3

k! · 2k

3k
e.

∞∑
j=4

j2 − j + 1√
j5 + 13

f.

∞∑
i=5

cos(iπ)

√(
1

2

)i
Solutions. a. We will use the Ratio Test.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣
(n+1)2

2n+1

n2

2n

∣∣∣∣∣ = lim
n→∞

(n+ 1)2

2n+1
· 2n

n2
= lim
n→∞

n2 + 2n+ 1

n2
· 2n

2n+1

= lim
n→∞

(
1 +

2

n
+

1

n2

)
· 1

2
= (1 + 0 + 0) · 1

2
=

1

2
< 1

It follows by the Ratio Test that

∞∑
n=0

n2

2n
converges. �

b. This is a bit of a trick question: sin(mπ) = 0 for all integers m, so the series is just
∞∑
m=1

0, which certainly converges. �

c. Since 0 <
1

e
< 1 and 0 < e−`

2

=
1

e`2
=

(
1

e

)`2
<

(
1

e

)`
whenever ` ≥ 2, the given

series converges by comparison with the geometric series

∞∑
`=2

(
1

e

)`
. �

d. We will use the Ratio Test. Since

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

∣∣∣∣∣
(k+1)!·2k+1

3k+1

k!·2k
3k

∣∣∣∣∣ = lim
k→∞

(k + 1)! · 2k+1

3k+1
· 3k

k! · 2k

= lim
k→∞

2(k + 1)

3
=∞ > 1 ,

the given series does not converge. �

e. Looking at the dominant terms in
j2 − j + 1√
j5 + 13

suggests that the given series should

converge, or not, as

∞∑
j=4

j2√
j5

does. Since

lim
j→∞

j2−j+1√
j5+13

j2√
j5

= lim
j→∞

(
j2 − j + 1

)
/j2(√

j5 + 13
)
/
√
j5

= lim
j→∞

1− 1
j + 1

j2√
1 + 13

j5

=
1− 0 + 0√

1 + 0
=

1

1
= 1 ,

3



the Limit Comparison Test tells us that

∞∑
j=4

j2 − j + 1√
j5 + 13

and

∞∑
j=4

j2√
j5

do indeed both con-

verge or both diverge. Since
∞∑
j=4

j2√
j5

=
∞∑
j=4

j2

j5/2
=
∞∑
j=4

1

j1/2
diverges by the p-Test, as

p = 1
2 − 0 = 1

2 ≤ 1, this means that
∞∑
j=4

j2 − j + 1√
j5 + 13

also diverges. �

f.
∞∑
i=5

cos(iπ)

√(
1

2

)i
=
∞∑
i=5

(−1)i
(

1√
2

)i
=
∞∑
i=5

(
− 1√

2

)i
converges because it is a geo-

metric series with common ratio r = − 1√
2

and |r| = 1√
2
< 1. �

3. Do any four (4) of a–f. [20 = 4 × 5 each]

a. Use the Right-Hand Rule or the Trapezoid Rule to approximate

∫ 1

0

(
1− x2

)
dx

to within 1
2 = 0.5 of the exact value.

b. Find the area of the finite region between y = x2 and y = x+ 2.

c. Suppose a1 = 1 and an+1 =
n+ 1

n
an. Compute lim

n→∞
an.

d. Find the volume of the solid obtained by revolving the region below y = 2 and
above y = 1, for 1 ≤ x ≤ 2, about the y-axis.

e. Suppose σ(n) =

{
1 if n = 4k or 4k + 1 for some integer k

−1 if n = 4k + 2 or 4k + 3 for some integer k
. What func-

tion has

∞∑
n=0

σ(n)xn

n!
as its Taylor series at a = 0?

f. Find the Taylor series at a = 0 of f(x) = e2x and determine its interval of
convergence.

Solutions. a. (Right-Hand Rule) Let f(x) = 1 − x2; then f ′(x) = −2x and it is easy
to see that |f ′(x)| = | − 2x| = 2|x| ≤ 2 for all x ∈ [0, 1]. We know from class that the

difference between the Right-Hand Rule sum for n and the definite integral
∫ b
a
f(x) dx it

approximates is at most M(b−a)2/n, where M is an upper bound for |f ′(x)| for x ∈ [a, b].
In this case a = 0, b = 1, and we can let M = 2. We need to choose n to ensure that
2(1−0)2/n = 2/n ≤ 0.5, which is equivalent to asking that n ≥ 2/0.5 = 4. The Right-Hand

4



Rule sum for
∫ 1

0

(
1− x2

)
dx with n = 4 is:

4∑
i=1

1− 0

4
f

(
0 + i

1− 0

4

)
=

1

4

4∑
i=1

f

(
i

4

)
=

1

4

4∑
i=1

(
1−

(
i

4

)2
)

=
1

4

[(
1− 1

16

)
+

(
1− 4

16

)
+

(
1− 9

16

)
+

(
1− 16

16

)]
=

1

4

[
15

16
+

12

16
+

7

16
+ 0

]
=

1

4
· 34

16
=

17

32
�

a. (Trapezoid Rule) Let f(x) = 1 − x2; then f ′(x) = −2x and f ′′(x) = −2. It is easy to
see that |f ′′(x)| = | − 2| = 2 for all x ∈ [0, 1]. We know from class and the textbook that

the difference between the Trapezoid Rule sum for n and the definite integral
∫ b
a
f(x) dx

it approximates is at most M(b−a)3
n2 , where M is an upper bound for |f ′(x)| for x ∈ [a, b].

In this case a = 0, b = 1, and we can let M = 2. We need to choose n to ensure that
2(1 − 0)3/n2 = 2/n2 ≤ 0.5, which is equivalent to asking that n2 ≥ 2/0.5 = 4, i.e. that

n ≥ 2. The Trapezoid Rule sum for
∫ 1

0

(
1− x2

)
dx with n = 2 is:

1− 0

2

[
1

2
f

(
0 + 0

1− 0

2

)
+ f

(
0 + 1

1− 0

2

)
+

1

2
f

(
0 + 2

1− 0

2

)]
=

1

2

[
1

2
f(0) + f

(
1

2

)
+

1

2
f(1)

]
=

1

2

[
1

2

(
1− 02

)
+

(
1−

(
1

2

)2
)

+
1

2

(
1− 12

)]

=
1

2

[
1

2
+

3

4
+ 0

]
=

1

2
· 5

4
=

5

8
�

Note. Both of the values obtained above,
17

32
using the Right-Hand Rule and

5

8
using the

Trapezoid Rule, are within 0.5 of the correct value of
2

3
for
∫ 1

0

(
1− x2

)
dx.

b. We first need to find out where y = x2 and y = x + 2 cross. If x2 = y = x + 2, then
0 = x2 − x − 2 = (x + 1)(x − 2), so x = −1 or x = 2. By comparing y values at x = 0,
02 = 0 < 2 = 0 + 2, we can see that y = x+ 2 is above y = x2 for −1 < x < 2. It follows
that the area of the region is:

Area =

∫ 2

−1

(
x+ 2− x2

)
dx =

(
1

2
x2 + 2x− 1

3
x3
)∣∣∣∣2
−1

=

(
1

2
22 + 2 · 2− 1

3
23
)
−
(

1

2
(−1)2 + 2(−1)− 1

3
(−1)3

)
=

10

3
−
(
−7

6

)
=

27

6
=

9

2
�

5



c. Observe that if n > 1, then an =
n

n− 1
an−1 =

n

n− 1
· n− 1

n− 2
an−2 =

n

n− 2
an−2 =

n

n− 2
· n− 2

n− 3
an−3 =

n

n− 3
an−3 = · · · = n

1
a1 =

n

1
·1 = n. Thus lim

n→∞
an = lim

n→∞
n =∞. �

d. (Washers) We are revolving the region about the y-axis, so if we use the disk/washer
method to compute the volume, we should use y as the fundamental variable. In this case,
1 ≤ y ≤ 2 for our region; the outside radius of the washer at y is the distance between
the y-axis and the line x = 2, R = 2, and the inside radius of the washer at y is the
distance between the y-axis and the line x = 1, r = 1. The washer at y thus has area
πR2 − πr2 = π22 − π12 = 4n− π = 3π. It follows that the volume of the solid is:

V =

∫ 2

1

A(y) dy =

∫ 2

1

3π dy = 3πy|21 = 3π · 2− 3π · 1 = 3π �

d. (Shells) We are revolving the region about the y-axis, so if we use the cylindrical shell
method to compute the volume, we should use x as the fundamental variable. In this case,
1 ≤ x ≤ 2 for our region; since we are rotating the region about the y-axis, the radius of
the cylindrical shell at x is just r = x, and its height is the distance between y = 2 and
y = 1, namely h = 2− 1 = 1. The shell at x thus has area A(x) = 2πrh = 2πx · 1 = 2πx.
It follows that the volume of the solid is:

V =

∫ 2

1

A(x) dx =

∫ 2

1

2πx dy = πx2
∣∣2
1

= π22 − π12 = 3π �

d. (Geometry) The solid in question is a cylinder of height 1 and radius 2 with a cylinder
of height 1 and radius 1 cut out from it. The volume of a cylinder of height h are radius
r is πr2h, so the volume of the given shape is π221− π121 = 4π − π = 3π. �

e. Note that the given series converges absolutely for all x by the Ratio Test because

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣
σ(n+1)xn+1

(n+1)!

σ(n)xn

n!

∣∣∣∣∣∣ = lim
n→∞

∣∣∣∣σ(n+ 1)xn+1

(n+ 1)!
· n!

σ(n)xn

∣∣∣∣ = lim
n→∞

|x|
n+ 1

= 0 < 1

since |σ(n)| = 1 for all n. It follows that the series may be freely rearranged without
altering the sum for any value of x. We will regroup this series according to whether n is
even or odd:

∞∑
n=0

σ(n)xn

n!
=
x0

0!
+
x1

1!
− x2

2!
− x3

3!
+
x4

4!
+
x5

5!
− x6

6!
− x7

7!
+ · · ·

=

(
x0

0!
− x2

2!
+
x4

4!
− x6

6!
+ · · ·

)
+

(
x1

1!
− x3

3!
+
x5

5!
− x7

7!
+ · · ·

)
Since

x0

0!
− x2

2!
+
x4

4!
− x6

6!
+ · · · is the Taylor series at a = 0 of cos(x) and

x1

1!
− x3

3!
+
x5

5!
−

x7

7!
+ · · · is the Taylor series at a = 0 of sin(x), the given series is the Taylor series at a = 0

of f(x) = cos(x) + sin(x). �
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f. (Brute Force) The Taylor series at a of f(x) is the power series

∞∑
n=0

f (n)(a)

n!
(x − a)n,

where f (n)(x) denotes the nth derivative of f(x) for n ≥ 1 and f (0)(x) = f(x). We will
grind out the first several derivatives of f(x) = e2x at a = 0 and look for a pattern we can
plug into Taylor’s formula:

n 0 1 2 3 4 · · ·
f (n)(x) e2x 2e2x 22e2x 23e2x 24e2x · · ·
f (n)(0) 1 2 22 23 24 · · ·

It’s pretty obvious that f (n)(0) = 2n for all n ≥ 0. (The paranoid may verify this with an
argument by induction.) It now follows that the Taylor series at a = 0 of f(x) = e2x is
∞∑
n=0

f (n)(0)

n!
(x− 0)n =

∞∑
n=0

2n

n!
xn. �

f. (Algebra) The Taylor series at a = 0 of ex is
∞∑
n=0

xn

n!
. To get the Taylor series at a = 0

of e2x, we simply plug in 2x for x in this series to get
∞∑
n=0

(2x)n

n!
=
∞∑
n=0

2n

n!
xn. �

4. Consider the region bounded by y = 0 and y =
1

x
for 1 ≤ x <∞.

a. Find the area of this region. [4]

b. Find the volume of the solid obtained by revolving the region about the x-axis.
[8]

Solutions. a. Since
1

x
> 0 for all x ≥ 1, the area of the region is:

A =

∫ ∞
1

1

x
dx = lim

t→∞

∫ t

1

1

x
dx = lim

t→∞
ln(x)|t1 = lim

t→∞
(ln(t)− ln(1)) =∞− 0 =∞ �

b. We will use the disk method, so, since the region is revolved about the x-axis, we work

in terms of x. The disk at x has radius r =
1

x
− 0 =

1

x
and so has area A(x) = πr2 =

π

(
1

x

)2

=
π

x2
. Thus the volume of the solid is:

V =

∫ ∞
1

A(x) dx =

∫ ∞
1

π

x2
dx = lim

t→∞

∫ t

1

π

x2
dx = lim

t→∞
−π
x

∣∣∣t
1

= lim
t→∞

[(
−π
t

)
−
(
−π

1

)]
= lim
t→∞

[
pi

−
π

t

]
= π − 0 = π �
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Part B. Do either one (1) of 5 or 6. [14]

5. Consider the piece of the parabola y =
1

2
x2 for which 0 ≤ x ≤ 2.

a. Find the arc-length of this piece. [9]

b. Find the area of the surface obtained by revolving this piece about the y-axis. [5]

Solutions. a. First,
dy

dx
=

d

dx

(
1

2
x2
)

=
1

2
· 2x = x. We will use the trigonometric

substitution x = tan(θ), so dx = sec2(θ) dθ, as well as the reduction formula
∫

sec3(θ) dθ =
1
2 sec(θ) tan(θ) + 1

2

∫
sec(θ) dθ, to deal with the arc-length integral:

arc-length =

∫ 2

0

s =

∫ 2

0

√
1 +

(
dy

dx

)2

dx =

∫ 2

0

√
1 + x2 dx

=

∫ x=2

x=0

√
1 + tan2(θ) sec2(θ) dθ =

∫ x=2

x=0

sec3(θ) dθ

=
1

2
sec(θ) tan(θ)

∣∣∣∣x=2

x=0

+
1

2

∫ x=2

x=0

sec(θ) dθ

=
1

2
x
√

1 + x2
∣∣∣∣2
0

+
1

2
ln (tan(θ) + sec(θ))

∣∣∣∣x=2

x=0

=
1

2
· 2
√

5− 1

2
· 0
√

1 + ln
(
x+

√
1 + x2

)∣∣∣2
0

=
√

5 + ln
(

2 +
√

5
)
− ln

(
0 +
√

1
)

=
√

5 + ln
(

2 +
√

5
)
�

b. As above, we have
dy

dx
= x. Since we are revolving the curve about the y-axis, the point

on the curve at x gets revolved through a circle of radius r = x− 0 = x. We will use the

substitution u = 1 + x2, so du = 2x dx and
x 0 2
u 1 5

, to deal with the resulting integral

for the area of the surface of revolution.

SA =

∫ 2

0

2πr ds =

∫ 2

0

2πx
√

1 + x2 dx =

∫ 5

1

π
√
u du =

∫ 5

1

πu1/2 du =
2

3
πu3/2

∣∣∣∣5
1

=
2

3
π · 53/2 − 2

3
π · 13/2 =

10
√

5

3
π − 2

3
π =

10
√

5− 2

3
π �

6. The region below y = −x2 + 4x− 3 and above y = 0 for 1 ≤ x ≤ 3 is revolved about
the line x = −1. Find the volume of the resulting solid. [14]

Solution. We will use the method of cylindrical shells to find the volume. (One could use
the disk/washer method, but there would be substantial overhead in terms of algebraic
complexity in this case.) Since we are revolving about a vertical line and using shells,
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we will work in terms of x. The shell at x has radius r = x − (−1) = x + 1 and height
h = y − 0 = −x2 + 4x − 3, and hence area A(x) = 2πrh = 2π(x + 1)

(
−x2 + 4x− 3

)
=

2π
(
−x3 + 3x2 + x− 3

)
. The volume of the solid of revolution is then given by:

V =

∫ 3

1

A(x) dx = 2π

∫ 3

1

(
−x3 + 3x2 + x− 3

)
dx = 2π

(
−1

4
x4 + x3 +

1

2
x2 − 3x

)∣∣∣∣3
1

= 2π

(
−1

4
· 34 + 33 +

1

2
· 32 − 3 · 3

)
− 2π

(
−1

4
· 04 + 03 +

1

2
· 02 − 3 · 0

)
= 2π

(
−81

4
+ 27 +

9

2
− 9

)
− 2π · 0 = 2π · 9

4
=

9

2
π �

Part C. Do either one (1) of 7 or 8. [14]

7. Find the Taylor series at a = 0 of f(x) =
2

x+ 2
and determine its radius and interval

of convergence.

Solution. (Brute Force) The Taylor series at a of f(x) is the power series
∞∑
n=0

f (n)(a)

n!
(x−

a)n, where f (n)(x) denotes the nth derivative of f(x) for n ≥ 1 and f (0)(x) = f(x). We

will grind out the first several derivatives of f(x) =
2

x+ 2
at a = 0 and look for a pattern

we can plug into Taylor’s formula:

n 0 1 2 3 4 · · ·
f (n)(x) 2

x+2 − 2
(x+2)2

4
(x+2)3 − 12

(x+2)4 · · ·
f (n)(0) 1 − 1

2
1
2 − 3

4 · · ·

A little reflection about what’s going on in the second line of the table tells us that

f (n)(x) =
2 · (−1)n · n!

(x+ 2)n+1
. It follows that f (n)(0) =

2 · (−1)n · n!

(0 + 2)n+1
=

(−1)nn!

2n
, and so the

Taylor series at a = 0 of f(x) =
2

x+ 2
is:

∞∑
n=0

f (n)(a)

n!
(x− a)n =

∞∑
n=0

(−1)nn!

2n
· (x− 0)n

n!
=
∞∑
n=0

(−1)n

2n
xn

It remains to determine the radius and interval of convergence of this series. Just for
kicks, we’ll use the Root Test, though the Ratio Test works equally well here:

lim
n→infty

∣∣∣∣ (−1)n

2n
xn
∣∣∣∣1/n = lim

n→infty

(∣∣∣x
2

∣∣∣n)1/n = lim
n→infty

∣∣∣x
2

∣∣∣ =
|x|
2

9



Since
|x|
2
< 1 exactly when |x| < 2, the Root tells us tells us that radius of convergence of

the Taylor series is 2.
To finish sorting out the interval of convergence, we check what happens at the end-

points, x = −2 and x = 2. When x = −2, the series becomes

∞∑
n=0

(−1)n

2n
(−2)n =

∞∑
n=0

(−1)n(−1)n2n

2n

∞∑
n=0

(−1)2n =

∞∑
n=0

1, which diverges by the Divergence Test because

lim
n→∞

1 = 1 6= 0. Similarly, when x = 2, the series becomes
∑∞
n=0

(−1)n
2n 2n =

∑∞
n=0(−1)n,

which diverges by the Divergence Test because lim
n→∞

(−1)n fails to exist, much less equal

0. It follows that the interval of convergence of the Taylor series is (−2, 2). �

Solution. (Algebra) f(x) =
2

x+ 2
looks somewhat similar to the formula for the sum of

a geometric series, which is a
1−r for the geometric series that has first term a and common

ratio r (where we ned to have |r| < 1 for this to work). We will do a bit of algebra to the
defining formula for f(x) to put it in the form of a sum for a geometric series:

f(x) =
2

2 + x
=

2

2 + x
·

1
2
1
2

=
2
2

2
2 + x

2

=
1

1 + x
2

=
1

1−
(
−x2
)

Thus f(x) is the sum of a geometric series with first term 1 and common ratio −x
2

, so
∞∑
n=0

(
−x

2

)n
=

∞∑
n=0

(−1)nxn

2n
, which must be the Taylor series of the function since every

power series is its own Taylor series. Note that this geometric series converges exactly

when the common ratio satisfies
∣∣∣−x

2

∣∣∣ =
|x|
2
< 1, i.e. exactly when |x| < 2. It follows that

the radius of convergence of the series is 2 and the interval of convergence is (−2, 2). �

8. Find the Taylor series at a = 1 of f(x) =
2

1 + x
and determine its radius and interval

of convergence.

Solution. Either solution to 7 can be executed here with only minor changes because

f(x) =
2

1 + x
=

2

2 + (x− 1)
, which is the same function that we have in 7, except with

x− 1 plugged in for x. The radius of convergence is also 2, and the interval of convergence
is (−2 + 1, 2 + 1) = (−1, 3) (i.e. the open interval of width 2 centered at 1 instead of 0). �

[Total = 100]

Part D. Bonus problems! If you feel like it and have the time, do one or both of these.

444. What does the infinite product 2
∞∏
n=1

[
2n

2n− 1
· 2n

2n+ 1

]
= 2 · 2

1
· 2

3
· 4

3
· 4

5
· 6

5
· 6

7
· 8

7
· · · ·

amount to? [1]
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Solution. This product, discovered by John Wallis (1616-1703), equals π. Takes a bit of
work to prove that mind you . . . :-) NNN

���. Write a haiku (or several :-) touching on calculus or mathematics in general. [1]

What is a haiku?

seventeen in three:
five and seven and five of

syllables in lines

Solution. You’re on your own! �

Enjoy the rest of your summer!
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