# Mathematics 1120 H - Calculus II: Integrals and Series 

Trent University, Summer 2018
Assignment \#2
A sequence of roots
Due at the exam on Monday, 30 July.
Consider the sequence defined by $a_{0}=0$ and, for all $n \geq 0, a_{n+1}=\sqrt{2+a_{n}}$.

1. Show that this sequence has a limit. [5]

Hint. Show that the sequence is bounded above by 2, i.e. $a_{n}<2$ for all $n \geq 0$, and is increasing, i.e. $a_{n}<a_{n+1}$ for all $n \geq 0$, and then apply the Monotone Convergence Theorem (Theorem 11.1.12 in §11.1 of the textbook).
2. Compute $\lim _{n \rightarrow \infty} a_{n}$. [5]

Hint. Take the limit of both sides of the equation $a_{n+1}=\sqrt{2+a_{n}}$ that was used to help define the sequence.

Bonus. What is the value of the infinite product

$$
\prod_{n=1}^{\infty} \frac{2}{a_{n}}=\frac{2}{\sqrt{2}} \cdot \frac{2}{\sqrt{2+\sqrt{2}}} \cdot \frac{2}{\sqrt{2+\sqrt{2+\sqrt{2}}}} \cdots \quad ?
$$

Explain why. [3]
Hint. The number $4 \cdot \prod_{n=1}^{\infty} \frac{2}{a_{n}}$ appears on this page.

