Mathematics 1120H - Calculus II: Integrals and Series

Trent University, Summer 2018
Assignment \#5
Are you series?
Due on Wednesday, 25 July.

1. Suppose x is a variable and a_{n} for $n \geq 0$ are constants such that

$$
\begin{aligned}
\sum_{n=0}^{\infty} a_{n} x^{n} & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots \\
& =\left(1+x+x^{2}+x^{3}+\cdots\right)^{2}=\left(\sum_{n=0}^{\infty} x^{n}\right)^{2}
\end{aligned}
$$

Find a formula for a_{n} in terms of n. [4]
Hint: Work out the first few a_{n} s by multiplying out $\left(1+x+x^{2}+x^{3}+\cdots\right)^{2}$ and then collecting like terms, and look for a pattern.
2. It is a fact that $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\cdots$, and the series in question converges for all $x \in \mathbb{R}$. There is another power series $\sum_{n=0}^{\infty} b_{n} x^{n}$ such that

$$
\left(\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\right)\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)=1
$$

for every value of the variable x. Find a formula for b_{n} in terms of n and determine for what values of x the series $\sum_{n=0}^{\infty} b_{n} x^{n}$ converges. [6]

