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Trent University, Summer 2025

MATH 1110H Midterm Test
Monday, 7 July

Time: 60 minutes

Name: Nemo Sum
Student Number: 0000000

Question Mark

1
2
3

Total /30

Instructions
• Show all your work. Legibly, please! Simplify where you reasonably can.
• If you have a question, ask it!
• Use the back sides of all the pages for rough work or extra space.
• You may use a calculator and all sides of one letter- or A4-size aid sheet.
• If you do more than the minimum number of parts or questions, only the first ones

the marker finds will be marked. Cross out anything you do not want marked.
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1. Do any two (2) of parts a–c. [10 = 2 × 5 each]

a. Use the ε–δ definition of limits to check that lim
x→3

(4x− 5) = 7.

b. Compute lim
x→−1

x3 − x
x+ 1

.

c. Use the limit definition of the derivative to verify that d

dx
x3 = 3x2.

Solutions. a. We need to show that for every ε > 0, we can find a δ > 0 such that if
|x− 3| < δ, then |(4x− 5)− 7| < ε.

Given an ε > 0, we reverse-engineer the required δ > 0.

|(4x− 5)− 7| < ε ⇐⇒ |4x− 12| < ε ⇐⇒ |4(x− 3)| < ε

⇐⇒ 4|x− 3| < ε ⇐⇒ |x− 3| < ε

4

Observe that every step above is reversible. If we now set δ = ε

4
, it follows that if

|x− 3| < δ = ε

4
, then |(4x− 5)− 7| < ε because we can run the chain of reasoning above

backwards.
Thus lim

x→3
(4x− 5) = 7 by ε–δ definition of limits. �

b. Using algebra. We do a little simplification before evaluating the limit because the
denominator, x+ 1, approaches 0 as x approaches −1.

lim
x→−1

x3 − x
x+ 1

= lim
x→−1

x
(
x2 − 1

)
x+ 1

= lim
x→−1

x(x− 1)(x+ 1)
x+ 1

= lim
x→−1

x(x− 1) = (−1)(−1− 1) = (−1)(−2) = 2 �

b. Using l’Hôpital’s Rule. Since both the numerator, x3 − x, and denominator, x + 1,
approach 0 as x approaches −1, we may apply l’Hôpital’s Rule.

lim
x→−1

x3 − x
x+ 1

→ 0
→ 0 = lim

x→−1

d
dx

(
x3 − x

)
d
dx (x+ 1)

= lim
x→−1

3x2 − 1
1

= 3(−1)2 − 1 = 3− 1 = 2 �

c. We plug f(x) = x3 into the limit definition of the derivative and see what emerges.

d

dx
x3 = lim

h→0

f(x+ h)− f(x)
h

= lim
h→0

(x+ h)3 − x3

h
= lim

h→0

x3 + 3x2h+ 3xh2 + h3 − x3

h

= lim
h→0

3x2h+ 3xh2 + h3

h
= lim

h→0

(
3x2 + 3xh+ h2) = 3x2 + 3x · 0 + 02 = 3x2

Thus d

dx
x3 = 3x2 by the limit definition of the derivative. �
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2. Find dy

dx
in any two (2) of parts a–c. [10 = 2 × 5 each]

a. y = ln (sec(x)) b. y = x+ 1
x3 − x

c. ex2+y2 = 10

Solutions. a. Chain Rule.

dy

dx
= d

dx
= ln (sec(x)) = 1

sec(x)
· d
dx

sec(x) = 1
sec(x)

· sec(x) tan(x) = tan(x) �

b. Simplify, then use the Quotient and Power Rules. x3−x = x
(
x2 − 1

)
= x(x−1)(x+1),

so y = x+ 1
x3 − x

= x+ 1
x(x− 1)(x+ 1)

= 1
x(x− 1)

= 1
x2 − x

. It follows that

dy

dx
= d

dx

(
1

x2 − x

)
=
[

d
dx1
] (
x2 − x

)
− 1

[
d
dx

(
x2 − x

)]
(x2 − x)2

=
0
(
x2 − x

)
− (2x− 1)

(x2 − x)2 = −2x+ 1
(x2 − x)2 �

Note. Using the Quotient and Power Rules first, and then simplifying, requires more
difficult algebra when simplifying.

c. Solve for y, then differentiate.

ex
2+y2

= 10 ⇐⇒ x2 + y2 = ln
(
ex

2+y2
)

= ln(10)

⇐⇒ y2 = ln(10)− x2 ⇐⇒ y = ±
√

ln(10)− x2

It follows that

dy

dx
= d

dx

(
±
√

ln(10)− x2
)

= ± 1
2
√

ln(10)− x2
· d
dx

(
ln(10)− x2)

= ±1
2
√

ln(10)− x2
· (−2x) = ∓x√

ln(10)− x2
. �

c. Simplify, then use implicit differentiation.

ex
2+y2

= 10 ⇐⇒ x2 + y2 = ln
(
ex

2+y2
)

= ln(10)

Differentiate on both sides:

d

dx

(
x2 + y2) = d

dx
ln10 ⇐⇒ 2x+ 2y dy

dx
= 0 ⇐⇒ dy

dx
= −2x

2y
= −x

y
�

Note. Using implicit differentiation first and then simplifying is a little bit more work,
but should give the same answer.
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3. Do one (1) of parts a or b. [10]

a. Find the domain as well as any and all intercepts, horizontal and vertical asymp-
totes, intervals of increase and decrease, local maximum and minimum points,
intervals of concavity, and inflection points of f(x) = e−x

2
, and sketch its graph

based on this information.
b. Two very long straight walls meet at right angles.

i. A triangular plot is to be created by cutting off this corner with a straight
fence from one wall to the other. What is the maximum possible area of the plot
if the fence is 25 m long? [7]
ii. A quarter-disk plot is to be created by cutting off this corner with a fence that
is a circular arc centred at the corner. What is the area of this plot if this fence
is 25 m long? [3]

Solutions. a. We run through the indicated checklist:
i. Domain. Since −x2 is defined for all x and et is defined for all t, f(x) = e−x

2
is defined

for all x. That is, the domain of f(x) is R = (−∞,∞).
ii. Intercepts. e−02 = e0 = 1, so y = f(x) has its y-intercept at y = 1.

Since et > 0 for all t, e−x2 is never 0, so y = f(x) has no x-intercepts.
iii. Vertical asympotes. Since f(x) = e−x

2
is defined for all x and is continuous wherever

it is defined (being a composition of contonuous functions), it does not have any vertical
asymptotes.
iv. Horizontal asymptotes. We check the behaviour of f(x) as x → −∞ and as x → ∞.
Note that −x2 → −∞ as x→ −∞ and as x→∞.

lim
x→−∞

e−x
2

= lim
t→−∞

et = 0+

lim
x→∞

e−x
2

= lim
t→−∞

et = 0+

Thus y = f(x) has y = 0 as an asymptote in both directions, which it approaches from
above in both directions.
v. Increase/decrease/maxima/minima. We compute the derivative . . .

f ′(x) = d

dx
e−x

2
= e−x

2
· d
dx

(
−x2) = e−x

2
· (−2x) = −2xe−x

2

. . . and then use it. Since e−x2
> 0 for all x,

f ′(x) = −2xe−x
2
< 0
= 0
> 0

⇐⇒ −2x
< 0
= 0
> 0

⇐⇒ x
> 0
= 0
< 0

.

This means f(x) is increasing when x < 0 and decreasing when x > 0, so it has a local
maximum at x = 0. We summarize this in a table:

x (−∞, 0) 0 (0,∞)
f ′(x) + 0 −
f(x) ↑ max ↓



vi. Intervals of concavity and inflection points. We compute the second derivative . . .

f ′′(x) = d

dx
f ′(x) = d

dx

(
−2xe−x

2
)

=
[
d

dx
(−2x)

]
e−x

2
+ (−2x)

[
d

dx
e−x

2
]

= [−2]e−x
2

+ (−2x)e−x
2
[
d

dx

(
−x2)] = −2e−x

2
+ (−2x)e−x

2
[−2x]

=
(
4x2 − 2

)
e−x

2
= 4

(
x2 − 1

2

)
e−x

2
= 4

(
x− 1√

2

)(
x+ 1√

2

)
e−x

2

. . . and put it to work. Since 4e−x2
> 0 for all x, f ′′(x) = 0 exactly when x = ± 1√

2 ;
f ′′(x) < 0 when exactly one of x − 1√

2 or x + 1√
2 is < 0, i.e. when − 1√

2 < x < 1√
2 ; and

f ′′(x) > 0 when x− 1√
2 and x+ 1√

2 are both > 0 or both < 0, i.e. when x < − 1√
2 and when

x > 1√
2 . This means that f(x) is concave up when x < − 1√

2 and when x > 1√
2 , concave

down when − 1√
2 < x < 1√

2 , and has inflection points when x = ± 1√
2 . We summarize this

in a table:
x

(
−∞, −1√

2

)
−1√

2

(
−1√

2 ,
1√
2

)
1√
2

(
1√
2 ,∞

)
f ′′(x) + 0 − 0 +
f(x) ^ infl _ infl ^

vii. Graph. We cheat and let a computer program called KmPlot do the job:

�
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b. i. Here’s a picture of the setup:

The two walls and the fence form a right triangle with base x and height y (along the
walls), with the 25 m fence forming the hypotenuse . Note that we must have 0 ≤ x ≤ 25
and 0 ≤ y ≤ 25, and that x = 0 exactly when y = 25 and y = 0 exactly when x = 25. This
triangle has area A = 1

2
· base · height = xy

2
and, by the Pythagorean Theorem, we have

x2 + y2 = 252 = 625.
We first solve for y in terms of x from the Pythagorean relation,

x2 + y2 = 252 ⇐⇒ y2 = 252 − x2 ⇐⇒ y = ±
√

252 − x2.

Since y ≥ 0, we have y =
√

252 − x2. Plugging this into the area formula for the triangle

now gives the area in terms of x only: A(x) = xy

2
= x
√

252 − x2

2
, where 0 ≤ x ≤ 25.

To find possible maxima we differentiate and look for critical points.

A′(x) = d

dx

(
x
√

252 − x2

2

)
= 1

2

([
d

dx
x

]√
252 − x2 + x

[
d

dx

√
252 − x2

])
= 1

2

(
[1]
√

252 − x2 + x

[
1

2
√

252 − x2
· d
dx

(
252 − x2)])

= 1
2

(√
252 − x2 + x · 1

2
√

252 − x2
· (−2x)

)
= 1

2

(√
252 − x2 − x2

√
252 − x2

)
Note that

A′(x) = 0 ⇐⇒
√

252 − x2 − x2
√

252 − x2
= 0 ⇐⇒

(
252 − x2)− x2 = 0

⇐⇒ 252 − 2x2

2
= 0 ⇐⇒ 2x2 = 252 ⇐⇒ x2 = 252

2
⇐⇒ x = ± 25√

2
.



Since 0 ≤ x ≤ 25, we need only consider x = 25√
2

. Observe that when x <
25√

2
, we get

252 − 2x2 > 0 ⇔
(
252 − x2)− x2 > 0 ⇔ A′(x) = 1

2

(√
252 − x2 − x2

√
252 − x2

)
> 0,

and when x >
25√

2
, we similarly get A′(x) = 1

2

(√
252 − x2 − x2

√
252 − x2

)
< 0. Thus

A(x) increases for x <
25√

2
and decreases for x >

25√
2

, which makes x = 25√
2

a local

maximum. This maximum is

A

(
25√

2

)
=

25√
2

√
252 −

(
25√

2

)2

2
=

25√
2

√
252 − 252

2

2

=
25√

2

√
252

2

2
=

25√
2 ·

25√
2

2
= 252

4
= 625

4
= 156.25 .

For the sharp-eyed, the fact that we did not consider x = 25, where A′(x) is undefined,
as a possible critical point, is made up for by the fact that we do consider it when checking
the endpoints. At the endpoints, we get zero area:

A(0) = 0
√

252 − 02

2
= 0 · 25

2
= 0 A(25) = 25

√
252 − 252

2
= 25 · 0

0
= 0

Thus the maximum area of such a plot is A
(

25√
2

)
= 252

4
= 156.25 m2. �

b. ii. Here is a picture of the setup: The circumference of a circle with radius r is
2πr. A quarter of that is πr

2
, which in this

case is equal to 25 m. Solving πr

2
= 25 for r

tells us that r = 50
π

. The area of a circle of this

radius is πr2 = π

(
50
π

)2

= 2500
π

, one quarter

of which is 2500
4π

= 625
π
≈ 198.9437. Thus this

is the area of the quarter-circular plot. Observe
that we didn’t use any calculus . . . �

[Total = 30]


