Mathematics 1110H - Calculus I: Limits, Derivatives, and Integrals

TRENT UNIVERSITY, Summer 2025 (S62)

Solution to Quiz #8 – Integration

Due on Thursday, 17 July.

1. Compute the indefinite integral $\int \frac{e^{2x}}{\sqrt{e^x+1}} dx$ by hand, showing (at least) all the major steps. [5]

SOLUTION. Our main tool will be substitution. There are several plausible substitutions one can try, such as $u = e^x$ and $w = e^x + 1$ (both of which work), but we will go whole hog and use the substitution $z = \sqrt{e^x + 1}$. Then

$$\frac{dz}{dx} = \frac{d}{dx}\sqrt{e^x + 1} = \frac{1}{2\sqrt{e^x + 1}} \cdot \frac{d}{dx}\left(e^x + 1\right) = \frac{1}{2\sqrt{e^x + 1}} \cdot e^x = \frac{e^x}{2\sqrt{e^x + 1}},$$

so $dz = \frac{e^x}{2\sqrt{e^x+1}} dx$. Note that $\frac{e^x}{2\sqrt{e^x+1}}$ is very close to the integrand we're dealing with, namely $\frac{e^{2x}}{\sqrt{e^x+1}}$. How close? Using the fact that $e^{2x} = e^x e^x$, this close:

$$\frac{e^{2x}}{\sqrt{e^x + 1}} = \frac{2e^x e^x}{2\sqrt{e^x + 1}} = 2e^x \cdot \frac{e^x}{2\sqrt{e^x + 1}}$$

Thus $\int \frac{e^{2x}}{\sqrt{e^x+1}} dx = \int 2e^x dz$. We need to express e^x in terms of z to integrate the latter, but that isn't too hard:

$$z = \sqrt{e^x + 1} \iff z^2 = e^x + 1 \iff e^x = z^2 - 1$$

It follows that

$$\int \frac{e^{2x}}{\sqrt{e^x + 1}} dx = \int 2e^x dz = \int 2(z^2 - 1) dz = 2\int (z^2 - 1) dz = 2\left(\frac{z^3}{3} - z\right) + C$$

$$= 2\left(\frac{(\sqrt{e^x + 1})^3}{3} - \sqrt{e^x + 1}\right) + C = \frac{2}{3}(e^x + 1)^{3/2} - 2(e^x + 1)^{1/2} + C,$$
or, say,
$$= 2\sqrt{e^x + 1}\left(\frac{e^x + 1}{3} - 1\right) + C = 2\sqrt{e^x + 1}\left(\frac{e^x}{3} - \frac{2}{3}\right) + C$$

$$= \frac{2}{3}(e^x - 2)\sqrt{e^x + 1} + C,$$

among other forms one could put the answer into \dots