Mathematics 1110H – Calculus I: Limits, Derivatives, and Integrals TRENT UNIVERSITY, Summer 2025 (S62)

Quiz #5 – Optimization

Due on Tuesday, 8 July.

1. Find the maximum possible area of a rectangle that can be inscribed in a semicircle of radius r, as in the diagram below. [5]

SOLUTION. *i. Diagram.* See above! Annotated a bit from what was originally provided.

ii. Variables, relations, and formulas. Suppose the corners of the inscribed rectangle, going counterclockwise from the bottom right corner, are at (x, 0), (x, y), (-x, y), and (-x, 0), as in the diagram above. Then $x^2 + y^2 = r^2$ because (x, y) is on the circle of radius r centred at the origin, and the area of the rectangle is $A = \text{width} \cdot \text{height} = (x - (x))(y - 0) = 2xy$.

If we choose to use x as the fundamental variable, then $0 \le x \le r$ and $y = \sqrt{r^2 - x^2}$, so the area of the rectangle is given by $A = 2x\sqrt{r^2 - x^2}$. This area is what we wish to maximize.

iii. Local maximum. We first look for any critical points $A = 2x\sqrt{r^2 - x^2}$ may have between 0 and r.

$$\begin{aligned} \frac{dA}{dx} &= \frac{d}{dx} 2x\sqrt{r^2 - x^2} = \left[\frac{d}{dx} 2x\right]\sqrt{r^2 - x^2} + 2x\left[\frac{d}{dx}\sqrt{r^2 - x^2}\right] \\ &= 2\sqrt{r^2 - x^2} + 2x \cdot \frac{1}{2\sqrt{r^2 - x^2}} \cdot \frac{d}{dx}\left(r^2 - x^2\right) \\ &= 2\sqrt{r^2 - x^2} + 2x \cdot \frac{1}{2\sqrt{r^2 - x^2}} \cdot (-2x) = 2\sqrt{r^2 - x^2} - \frac{2x^2}{\sqrt{r^2 - x^2}} \end{aligned}$$

It follows that, multiplying through by $\sqrt{r^2 - x^2}$ in $\frac{dA}{dx}$,

$$\frac{dA}{dx} = 2\sqrt{r^2 - x^2} - \frac{2x^2}{\sqrt{r^2 - x^2}} = 0 \iff 2(r^2 - x^2) - 2x^2 = 0 \iff 2r^2 - 4x^2 = 0$$
$$\iff x^2 = \frac{2r^2}{4} \iff x = \pm \frac{r}{\sqrt{2}}$$

Of the two possibilities, only the critical point $x = +\frac{r}{\sqrt{2}}$ is in the interval [0, r]. We check to see if it is a local maximum. Note that $\sqrt{r^2 - x^2} \ge 0$ whenever it is defined.

$$\frac{dA}{dx} = 2\sqrt{r^2 - x^2} - \frac{2x^2}{\sqrt{r^2 - x^2}} < 0 \iff 2(r^2 - x^2) - 2x^2 < 0 \iff 2r^2 - 4x^2 < 0$$
$$\iff \frac{2r^2}{4} < x^2 \iff \frac{r}{\sqrt{2}} < x$$
$$\frac{dA}{dx} = 2\sqrt{r^2 - x^2} - \frac{2x^2}{\sqrt{r^2 - x^2}} > 0 \iff 2(r^2 - x^2) - 2x^2 > 0 \iff 2r^2 - 4x^2 > 0$$
$$\iff \frac{2r^2}{4} > x^2 \iff \frac{r}{\sqrt{2}} > x$$

It follows that $A = 2x\sqrt{r^2 - x^2}$ is increasing for $0 < x < \frac{r}{\sqrt{2}}$ and decreasing for $\frac{r}{\sqrt{2}} < x < r$. Thus $x = \frac{r}{\sqrt{2}}$ gives a local maximum for A, and

$$A\left(\frac{r}{\sqrt{2}}\right) = 2 \cdot \frac{r}{\sqrt{2}} \cdot \sqrt{r^2 - \left(\frac{r}{\sqrt{2}}\right)^2} = 2 \cdot \frac{r}{\sqrt{2}} \cdot \sqrt{\frac{r^2}{2}} = 2 \cdot \frac{r}{\sqrt{2}} \cdot \frac{r}{\sqrt{2}} = r^2$$

Note that at the endpoint x = r, $\frac{dA}{dx}$ is undefined, and so should be considered as a possible critical point as well, but it will be considered with the other endpoint soon. *iv. Endpoints.* As noted above we need to consider $A(x) = 2x\sqrt{r^2 - x^2}$ at the endoints of the domain $0 \le x \le r$.

$$A(0) = 2 \cdot 0 \cdot \sqrt{r^2 - 0^2} = 2 \cdot 0 \cdot r = 0$$
$$A(r) = 2 \cdot r \cdot \sqrt{r^2 - r^2} = 2 \cdot r \cdot 0 = 0$$

Thus A(x) is smaller at the endpoints than at the critical point $x = \frac{r}{\sqrt{2}}$, so its value at the critical point is an absolute maximum.

v. Conclusion. The maximum area of a rectangle inscribed in a semicircle of radius r is $A\left(\frac{r}{\sqrt{2}}\right) = r^2$.