Mathematics 1110H - Calculus I: Limits, Derivatives, and Integrals

Trent University, Summer 2025 (S62)

Final Examination

19:00-22:00 in ENW 117 on Tuesday, 29 July.

Instructions: Do both of parts **I** and **II**, and, if you wish, part **III**. Please show all your work, justify all your answers, and simplify these where you reasonably can. When you are asked to do k of n questions, only the first k that are not crossed out will be marked. If you have a question, or are in doubt about something, ask!

Aids: Any calculator, as long as it can't communicate with other devices; (all sides of) one letter- or A4-size sheet; one organic brain belonging to you.

Part I. Do all four (4) of **1–4**.

1. Compute $\frac{dy}{dx}$ as best you can in any four (4) of a-f. [20 = 4 × 5 each]

a.
$$y = \frac{9 - x^2}{3 + x}$$
 b. $y = \frac{\cos(x)}{1 + \sin(x)}$ **c.** $y = \frac{x}{\ln(x)}$

$$\mathbf{b.} \quad y = \frac{\cos(x)}{1 + \sin(x)}$$

$$\mathbf{c.} \quad y = \frac{x}{\ln(x)}$$

d.
$$y = (e^x + 3)^5$$

d.
$$y = (e^x + 3)^5$$
 e. $y = x \tan(x^2)$ **f.** $y = x^2 e^x$

$$\mathbf{f.} \quad y = x^2 e^x$$

2. Evaluate any four (4) of the integrals \mathbf{a} - \mathbf{f} . $|20 = 4 \times 5 \; each|$

$$\mathbf{a.} \quad \int \frac{x+1}{x^2+1} \, dx$$

b.
$$\int_{1}^{e} \ln(x) \, dx$$

a.
$$\int \frac{x+1}{x^2+1} dx$$
 b. $\int_1^e \ln(x) dx$ **c.** $\int 6x^2 \cos(x^3+\pi) dx$

$$\mathbf{d.} \quad \int_0^1 x^2 e^x \, dx$$

d.
$$\int_0^1 x^2 e^x dx$$
 e. $\int \frac{x+3}{x^2-9} dx$ **f.** $\int_0^{\pi} \sin(2x) dx$

$$\mathbf{f.} \quad \int_0^\pi \sin(2x) \, dx$$

- **3.** Do any four (4) of **a**–**f**. [20 = 4×5 each]
 - **a.** Compute $\lim_{x \to \infty} \frac{\ln(x)}{x}$.
 - **b.** Use the ε - δ definition of limits to verify that $\lim_{x\to -1} (2x+3) = 1$.
 - **c.** At what point (x,y) does the graph of $y=x^2$ have a tangent line with slope 4?
 - **d.** Sketch the region between $y = \cos(x)$ and $y = -\cos(x)$, for $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$, and find its area.
 - **e.** Let f(x) = |x|. Determine whether f'(x) is defined at x = 0.
 - **f.** Suppose $f'(x) = \cos(x)$ and f(0) = 2. What is the function f(x)?
- 4. Find the domain, intercepts, vertical and horizontal asymptotes, intervals of increase and decrease, maximum and minimum points, intervals of concavity, and inflection points of $f(x) = xe^x$. [15]

Part II. Do one (1) of **5–7**.

- **5.** The region between y = 4 and y = 4 x, where $0 \le x \le 4$, is revolved about the y-axis.
 - a. Sketch the resulting solid of revolution. [2]
 - **b.** Find the volume of the solid. [8]
- **6.** It is night. Meredith Stick, who is 1.5 m tall, walks slowly at 1 m/s on level ground, holding a lamp on a stick 2 m above the ground. Meredith is moving straight towards a 1 m tall fence post, which casts a shadow on the ground in the light from the lamp.
 - **a.** Draw a diagram of this setup. [2]
 - **b.** How is the length of this shadow changing at the instant that Meredith is $4\ m$ from the post? /8/
- 7. A rectangle has its base on the part of the x-axis with $-4 \le x \le 4$, and its upper corners on the lines y = 4 + x and y = 4 x, respectively.
 - **a.** Draw a diagram of this setup. [2]
 - **b.** What is the maximum possible area of such a rectangle? [8]

[Total = 85]

Part III. Here be bonus points! Do none, or one, or both of the following questions.

- $\sqrt{64}$. Suppose you know that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$. (Which is true.) What does $\sum_{k=1}^{\infty} \frac{1}{(2k-1)^2}$ then have to be? [1]
- $\sqrt{81}$. Write a haiku touching on calculus or mathematics in general. [1]

What is a haiku?

seventeen in three: five and seven and five of syllables in lines

REST, RELAX, AND ENJOY THE REST OF THE SUMMER!