Trigonometric Identities, Limits, Derivatives, and Integrals A Very Brief Summary

In general, we'll only deal with four trigonometric functions, $\sin (x)$ (sine), $\cos (x)$ (cosine), $\tan (x)=\frac{\sin (x)}{\cos (x)}$ (tangent), and $\sec (x)=\frac{1}{\cos (x)}$ (secant). The remaining two standard trigonometric functions, $\cot (x))=\frac{\cos (x)}{\sin (x)}$ (cotangent) and $\csc (x)=\frac{1}{\sin (x)}$ (cosecant), don't come up nearly as often and are usually looked up when they do come up ...
0. A small set of trigonometric identities

- $\sin ^{2}(x)+\cos ^{2}(x)=1$
[Often used in the form $\cos ^{2}(x)=1-\sin ^{2}(x)$ or $\sin ^{2}(x)=1-\cos ^{2}(x)$.]
- $1+\tan ^{2}(x)=\sec ^{2}(x)$
[Sometimes used in the form $\sec ^{2}(x)-1=\tan ^{2}(x)$.]
- $\sin (2 x)=2 \sin (x) \cos (x)$
- $\cos (2 x)=\cos ^{2}(x)-\sin ^{2}(x)$

$$
\begin{aligned}
& =2 \cos ^{2}(x)-1 \\
& =1-2 \sin ^{2}(x)
\end{aligned}
$$

[Sometimes used in the form $\cos ^{2}(x)=\frac{1}{2}+\frac{1}{2} \cos (2 x)$ or $\sin ^{2}(x)=\frac{1}{2}-\frac{1}{2} \cos (2 x)$.]

- The double angle identities above are special cases of the addition identities $\sin (x+y)=\sin (x) \cos (y)+\cos (x) \sin (y)$ and $\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y)$.
It is also useful to keep in mind that:
- $\sin (x), \cos (x)$, and $\sec (x)$ are periodic with period 2π : for any real number x and any integer $n, \sin (x+2 n \pi)=\sin (x), \cos (x+2 n \pi)=\cos (x)$, and $\sec (x+2 n \pi)=\sec (x)$.
- $\tan (x)$ is periodic with period π : for any real number x and any integer $n, \tan (x+$ $n \pi)=\tan (x)$.
- $\sin (x)$ and $\tan (x)$ are odd functions, $\sin (-x)=-\sin (x)$ and $\tan (-x)=-\tan (x)$ for all x, while $\cos (x)$ and $\sec (x)$ are even functions, $\cos (-x)=\cos (x)$ and $\sec (-x)=\sec (x)$ for all x.
- Phase shifts are fun: $\sin \left(x+\frac{\pi}{2}\right)=\cos (x), \cos \left(x-\frac{\pi}{2}\right)=\sin (x), \sin (x \pm \pi)=-\sin (x)$, and $\cos (x \pm \pi)=-\cos (x)$, for all x. (You can have some fun working out what this means for $\tan (x)$ and $\sec (x)$. :-))

1. The key trigonometric limits

- If $f(x)$ is any of the trigonometric functions and it is defined at $x=a$, then it is continuous at $x=a$, i.e. $\lim _{x \rightarrow a} f(x)=f(a)$.
- $\tan (x)$ has asymptotes at $x=n \pi+\frac{\pi}{2}$ for each integer n. If $a=n \pi+\frac{\pi}{2}$, then $\lim _{x \rightarrow a^{-}} \tan (x)=\infty$ and $\lim _{x \rightarrow a^{+}} \tan (x)=-\infty$.
- $\sec (x)$ has asymptotes at $x=n \pi+\frac{\pi}{2}$ for each integer n. If $a=n \pi+\frac{\pi}{2}$, then $\lim _{x \rightarrow a^{-}} \sec (x)=\infty$ and $\lim _{x \rightarrow a^{+}} \sec (x)=-\infty$ if n is even, and $\lim _{x \rightarrow a^{-}} \sec (x)=-\infty$ and $\lim _{x \rightarrow a^{+}} \sec (x)=\infty$ if n is odd.
- $\lim _{h \rightarrow 0} \frac{\sin (h)}{h}=1$ and $\lim _{h \rightarrow 0} \frac{\cos (h)-1}{h}=0$.

2. The key trigonometric derivatives

- $\frac{d}{d x} \sin (x)=\cos (x)$ and $\frac{d}{d x} \cos (x)=-\sin (x)$.
- $\frac{d}{d x} \tan (x)=\sec ^{2}(x)$ and $\frac{d}{d x} \sec (x)=\sec (x) \tan (x)$.

4. Some trigonometric integral reduction formulas

The following formulas can each be obtained by a judicious use of trigonometric identities, algebra, integration by parts, and substitution. So long as $n \geq 2$, we have:

- $\int \sin ^{n}(x) d x=-\frac{1}{n} \sin ^{n-1}(x) \cos (x)+\frac{n-1}{n} \int \sin ^{n-2}(x) d x$
- $\int \cos ^{n}(x) d x=\frac{1}{n} \cos ^{n-1}(x) \sin (x)+\frac{n-1}{n} \int \cos ^{n-2}(x) d x$
- $\int \tan ^{n}(x) d x=\frac{1}{n-1} \tan ^{n-1}(x)-\int \tan ^{n-2}(x) d x$
- $\int \sec ^{n}(x) d x=\frac{1}{n-1} \tan (x) \sec ^{n-2}(x)+\frac{n-2}{n-1} \int \sec ^{n-2}(x) d x$
- Just for fun - one usually looks this up as necessary - if we also have $k \geq 2$, then:

$$
\begin{aligned}
\int \sin ^{k}(x) \cos ^{n}(x) d x & =-\frac{\sin ^{k-1}(x) \cos ^{n+1}(x)}{k+n}+\frac{k-1}{k+n} \int \sin ^{k-2}(x) \cos ^{n}(x) d x \\
& =+\frac{\sin ^{k+1}(x) \cos ^{n-1}(x)}{k+n}+\frac{n-1}{k+n} \int \sin ^{k}(x) \cos ^{n-2}(x) d x
\end{aligned}
$$

For real obscurity, try to find or compute the corresponding formulas for integrands with mixed $\sec (x)$ and $\tan (x)$, not to mention the various reduction formulas involving $\csc (x)$ and/or $\cot (x)$.

