TRENT UNIVERSITY, SUMMER 2023 (S61)

MATH 1110H Test Monday, 29 May

Time: 50 minutes

Name: _____

STUDENT NUMBER:

 Question
 Mark

 1

 2

 3

 Total

Instructions

- Show all your work. Legibly, please! Simplify where you reasonably can.
- If you have a question, ask it!
- Use the back sides of all the pages for rough work or extra space.
- You may use a calculator and (all sides of) one letter- or A4-size aid sheet.
- If you do more than the minimum number of parts, the better ones will count.

- **1.** Do any two (2) of parts **a**–**c**. $[10 = 2 \times 5 \text{ each}]$
 - **a.** Use the ε - δ definition of limits to verify that $\lim_{x \to -2} (-3x + 4) = 10$.
 - **b.** Compute $\lim_{x \to 0} \frac{x}{\tan x}$.
 - **c.** At what point, if any, does the tangent line to $y = -x^2 + 4x 3$ have slope 10?

2. Find $\frac{dy}{dx}$ as best you can in any *two* (2) of parts **a**–**c**. [10 = 2 × 5 each]

a.
$$y = \frac{(x-2)^3}{(x-1)^2}$$
 b. $(y-2)^3 = (x-1)^2$ **c.** $y = -\ln(\cos(x^2))$

- **3.** Do one (1) of parts **a** or **b**. [10]
 - **a.** Find the maximum area of a rectangle with each side parallel to one or the other of the x- and y-axes, with two of its corners on the x-axis, and the other two on the part of the parabola $y = \frac{1}{3} (4 x^2)$ for which $-2 \le x \le 2$.
 - **b.** Find all of the vertical and horizontal asymptotes, if any, of $f(x) = \frac{x}{\ln(x)}$.