Mathematics 1110H - Calculus I: Limits, Derivatives, and Integrals
 Trent University, Summer 2023 (S61)
 Quiz \#9
 Mostly calculus without calculus! ${ }^{\dagger}$
 Due* just before midnight on Thursday, 1 June.

Please show all your work when answering the questions below.

1. Use you knowledge of calculus to compute $\int_{0}^{\pi} \sin (x) d x$. [3]
2. Without using any more calculus, use the result of $\mathbf{1}$ to help you compute the integral $\int_{0}^{2 \pi} 2 \sin \left(\frac{x}{2}\right) d x .[3]$

Hint: The region given by $0 \leq y \leq 2 \sin \left(\frac{x}{2}\right)$, for $0 \leq x \leq 2 \pi$, can be obtained by stretching the region given by $0 \leq y \leq \sin (x)$, for $0 \leq x \leq \pi$.
3. Sketch the region given by $-\sin (x) \leq y \leq 2 \sin \left(\frac{x}{2}\right)$, for $0 \leq x \leq 2 \pi$. [1]
4. Without using any more calculus, use the knowledge you have gained from $1-\mathbf{3}$ to help you compute the area of the region in 3. [3]

[^0]
[^0]: \dagger As Bruce Lee is supposed to have described his approach to martial arts, "It's the art of fighting without fighting."

 * You should submit your solutions via Blackboard's Assignments module, preferably as a single pdf. If this fails, you may submit your work to the instructor on paper or by email to sbilaniuk@ trentu.ca.

