Mathematics 1110H - Calculus I: Limits, Derivatives, and Integrals
 Trent University, Summer 2023 (S61)
 Solutions to Quiz \#11 More Integration

Please show all your work when answering the questions below. Do them by hand, please! Feel free to check your work using SageMath, though.

1. Work out $\int \sinh (x) \cos (x) d x$. [2.5]

Note: Recall that $\sinh (x)=\frac{e^{x}-e^{-x}}{2}$ and $\cosh (x)=\frac{e^{x}+e^{-x}}{2}$. These two functions are each other's derivatives, and hence also each other's antiderivatives. That is a $\cos (x)$ in the integral, though, not a $\cosh (x)$.

Solution. We will use integration by parts twice, and do a little algebra after that.

$$
\begin{aligned}
& \int \sinh (x) \cos (x) d x= \sinh (x) \sin (x)-\int \cosh (x) \sin (x) d x \\
& \text { where } \begin{array}{r}
u=\sinh (x) \\
u^{\prime}=\cosh (x) \\
v^{\prime}
\end{array} \quad v=\cos (x) \\
&= \sinh (x) \sin (x)-\left[\begin{array}{cc}
\cosh (x)(-\cos (x))-\int \sinh (x)(-\cos (x)) d x
\end{array}\right] \\
& \text { where } \begin{aligned}
s=\cosh (x) & t^{\prime}=\sin (x) \\
s^{\prime} & =\sinh (x) \quad t=-\cos (x)
\end{aligned} \\
&=\sinh (x) \sin (x)+\cosh (x) \cos (x)-\int \sinh (x) \cos (x) d x
\end{aligned}
$$

We now solve for $\int \sinh (x) \cos (x) d x$.

$$
\begin{aligned}
& 2 \int \sinh (x) \cos (x) d x=\sinh (x) \sin (x)+\cosh (x) \cos (x) \\
\Longrightarrow & \int \sinh (x) \cos (x) d x=\frac{\sinh (x) \sin (x)+\cosh (x) \cos (x)}{2}+C
\end{aligned}
$$

Check:

```
In [1]: integral(sinh(x)*}\operatorname{cos}(x),x
Out[1]: 1/4*((e^(2*x) + 1)*}\operatorname{cos}(x)+(\mp@subsup{e}{}{\wedge}(2*x) - 1)* sin(x))* (e^(-x
```

Note that SageMath puts the answer in terms of e^{x}, i.e. in terms of the definitions of $\sinh (x)$ and $\cosh (x)$. The answers are actually the same after some algebra.
2. Compute $\int_{0}^{1} x \arctan (x) d x$. [2.5]

Note: Just in case, $\arctan (0)=0$ and $\arctan (1)=\frac{\pi}{4}$.
Solution. We will use little algebraic trick after using integration by parts.

$$
\begin{aligned}
& \int_{0}^{1} x \arctan (x) d x=\left.\frac{x^{2}}{2} \arctan (x)\right|_{0} ^{1}-\int_{0}^{1} \frac{1}{1+x^{2}} \cdot \frac{x^{2}}{2} d x \\
& \quad \text { where } \begin{array}{c}
u=\arctan (x) \\
u^{\prime}=1 /\left(1+x^{2}\right) \quad v=x^{2} / 2
\end{array} \\
&=\left.\frac{x^{2}}{2} \arctan (x)\right|_{0} ^{1}-\frac{1}{2} \int_{0}^{1} \frac{x^{2}}{1+x^{2}} d x \\
&=\left.\frac{x^{2}}{2} \arctan (x)\right|_{0} ^{1}-\frac{1}{2} \int_{0}^{1} \frac{1+x^{2}-1}{1+x^{2}} d x \\
&=\left.\frac{x^{2}}{2} \arctan (x)\right|_{0} ^{1}-\frac{1}{2} \int_{0}^{1} \frac{1+x^{2}}{1+x^{2}} d x-\frac{1}{2} \int_{0}^{1} \frac{-1}{1+x^{2}} d x \\
&=\left.\frac{x^{2}}{2} \arctan (x)\right|_{0} ^{1}-\frac{1}{2} \int_{0}^{1} 1 d x+\frac{1}{2} \int_{0}^{1} \frac{1}{1+x^{2}} d x \\
&=\left.\frac{x^{2}}{2} \arctan (x)\right|_{0} ^{1}-\left.\frac{x}{2}\right|_{0} ^{1}+\left.\frac{1}{2} \arctan (x)\right|_{0} ^{1} \\
&=\left[\frac{1^{2}}{2} \arctan (1)-\frac{0^{2}}{2} \arctan (0)\right]-\left[\frac{1}{2}-\frac{0}{2}\right] \\
&=\left[\frac{1}{2} \cdot \frac{\pi}{4}-0\right]-\left[\frac{1}{2}-0\right]+\left[\frac{1}{2} \cdot \frac{\pi}{4}-0\right] \\
&=\frac{\pi}{8}-\frac{1}{2}+\frac{\pi}{8}=\frac{\pi}{4}-\frac{1}{2} \approx 0.2854
\end{aligned}
$$

Check:

```
In [2]: integral(x*arctan(x),x,0,1)
Out[2]: 1/4*pi - 1/2
```

