# Mathematics 1110H - Calculus I: Limits, Derivatives, and Integrals Trent University, Summer 2023 (S61) <br> <br> Solutions to Quiz \#1 

 <br> <br> Solutions to Quiz \#1}

Do both of the following questions.

1. Use the $\varepsilon-\delta$ definition of limits to verify that $\lim _{x \rightarrow 3}(4-2 x)=-2$. [3]

Solution. Recall that $\lim _{x \rightarrow 3}(4-2 x)=-2$ means:
For every $\varepsilon>0$, there is a $\delta>0$, such that

$$
\text { if }|x-3|<\delta \text {, then }|(4-2 x)-(-2)|<\varepsilon
$$

Suppose that we are given some arbitrary $\varepsilon>0$. As usual, we will find a corresponding $\delta>0$ by reverse-engineering: starting with $|(4-2 x)-(-2)|<\varepsilon$, we will backwards towards an inequality of the form $|x-3|<\delta$. Here goes:

$$
\begin{aligned}
|(4-2 x)-(-2)|<\varepsilon & \Longleftrightarrow|4-2 x+2|<\varepsilon \\
& \Longleftrightarrow|6-2 x|<\varepsilon \\
& \Longleftrightarrow|2(3-x)|<\varepsilon \\
& \Longleftrightarrow 2|3-x|<\varepsilon \\
& \Longleftrightarrow|3-x|<\frac{\varepsilon}{2} \\
& \Longleftrightarrow|x-3|<\frac{\varepsilon}{2} \quad \text { since }|3-x|=|x-3|
\end{aligned}
$$

Note that every step is reversible. It follows that if we let $\delta=\frac{\varepsilon}{2}$ and have some $x$ with $|x-3|<\delta=\frac{\varepsilon}{2}$, then $|(4-2 x)-(-2)|<\varepsilon$, as desired. Observe that this procedure works no matter what $\varepsilon>0$ we are given.

Thus, by the $\varepsilon-\delta$ definition of limits, $\lim _{x \rightarrow 3}(4-2 x)=-2$.
2. Compute $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x-1}$ using algebra and the limit laws. [2]

Solution. Since $f(x)=\frac{\left(x^{2}-1\right) \cdot 2^{x}}{(x-1) \cdot 3^{x}}$ is, like all rational functions, continuous wherever it is defined, we could just plug in $x=1$ and evaluate to compute the limit if only the function was defined at $x=1$. Unfortunately, because of the $x-1$ in the denominator, the function we're taking the limit of at $x=1$ is not defined at $x=1$. (Dividing by 0 is not recommended for your mental health!) We can get around this by observing that $x^{3}-1=(x-1)\left(x^{2}+x+1\right)$, which lets us compute the limit using a little cancellation:

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{x^{3}-1}{x-1} & =\lim _{x \rightarrow 1} \frac{(x-1)\left(x^{2}+x+1\right)}{x-1} \\
& =\lim _{x \rightarrow 1} \frac{\left(x^{2}+x+1\right)}{1} \quad \text { cancelling the }(x-1) \mathrm{s} \\
& =\lim _{x \rightarrow 1}\left(x^{2}+x+1\right) \quad \text { which is continuous everywhere, so } \ldots \\
& =\left(1^{2}+1+1\right)=3
\end{aligned}
$$

Note that every polynomial is continuous at every point, so we can compute their limits at a point just by evaluating them at that point.

