Mathematics 1110H – Calculus I: Limits, Derivatives, and Integrals TRENT UNIVERSITY, Summer 2023 (S61)

Solutions to Quiz #1

Do both of the following questions.

1. Use the $\varepsilon - \delta$ definition of limits to verify that $\lim_{x \to 3} (4 - 2x) = -2$. [3]

SOLUTION. Recall that $\lim_{x\to 3} (4-2x) = -2$ means: For every $\varepsilon > 0$, there is a $\delta > 0$, such that if $|x-3| < \delta$, then $|(4-2x) - (-2)| < \varepsilon$.

Suppose that we are given some arbitrary $\varepsilon > 0$. As usual, we will find a corresponding $\delta > 0$ by reverse-engineering: starting with $|(4-2x) - (-2)| < \varepsilon$, we will backwards towards an inequality of the form $|x-3| < \delta$. Here goes:

$$\begin{aligned} |(4-2x) - (-2)| &< \varepsilon \Longleftrightarrow |4-2x+2| < \varepsilon \\ &\iff |6-2x| < \varepsilon \\ &\iff |2(3-x)| < \varepsilon \\ &\iff 2|3-x| < \varepsilon \\ &\iff |3-x| < \frac{\varepsilon}{2} \\ &\iff |x-3| < \frac{\varepsilon}{2} \quad \text{since } |3-x| = |x| \end{aligned}$$

Note that every step is reversible. It follows that if we let $\delta = \frac{\varepsilon}{2}$ and have some x with $|x-3| < \delta = \frac{\varepsilon}{2}$, then $|(4-2x) - (-2)| < \varepsilon$, as desired. Observe that this procedure works no matter what $\varepsilon > 0$ we are given.

-3|

Thus, by the ε - δ definition of limits, $\lim_{x\to 3}(4-2x) = -2$. \Box

2. Compute $\lim_{x\to 1} \frac{x^3-1}{x-1}$ using algebra and the limit laws. [2] SOLUTION. Since $f(x) = \frac{(x^2-1)\cdot 2^x}{(x-1)\cdot 3^x}$ is, like all rational functions, continuous wherever it is defined, we could just plug in x = 1 and evaluate to compute the limit if only the function was defined at x = 1. Unfortunately, because of the x - 1 in the denominator, the function we're taking the limit of at x = 1 is not defined at x = 1. (Dividing by 0 is not recommended for your mental health!) We can get around this by observing that $x^3 - 1 = (x - 1)(x^2 + x + 1)$, which lets us compute the limit using a little cancellation:

$$\lim_{x \to 1} \frac{x^3 - 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x^2 + x + 1)}{x - 1}$$
$$= \lim_{x \to 1} \frac{(x^2 + x + 1)}{1} \quad \text{cancelling the } (x - 1)\text{s}$$
$$= \lim_{x \to 1} (x^2 + x + 1) \quad \text{which is continuous everywhere, so } \dots$$
$$= (1^2 + 1 + 1) = 3$$

Note that every polynomial is continuous at every point, so we can compute their limits at a point just by evaluating them at that point. \Box