Mathematics 1110H - Calculus I: Limits, Derivatives, and Integrals
 Trent University, Summer 2023 (S61)
 Final Examination
 19:00-22:00 in ENW 114 on Wednesday, 14 June.

Instructions: Do both of parts I and II, and, if you wish, part III. Please show all your work, justify all your answers, and simplify these where you reasonably can. When you are asked to do k of n questions, only the first k that are not crossed out will be marked. If you have a question, or are in doubt about something, ask!
Aids: Any calculator, as long as it can't communicate with other devices; (all sides of) one letter- or A4-size sheet; one natural intelligence.

Part I. Do all four (4) of 1-4.

1. Compute $\frac{d y}{d x}$ as best you can in any four (4) of a-f. [20 $=4 \times 5$ each]
a. $y=x \tan (x)$
b. $y=\frac{\cos (x)}{x}$
c. $y=\int_{1}^{x / 2} \cos (t) d t$
d. $y=(x-3)^{10}$
e. $y=\ln \left(1+e^{x}\right)$
f. $y=\sin ^{2}(\ln (x))$
2. Evaluate any four (4) of the integrals a-f. [$20=4 \times 5$ each]
a. $\int \frac{x}{x^{2}+1} d x$
b. $\int_{0}^{e-1} \frac{x}{x+1} d x$
c. $\int_{0}^{\pi} x \cos (x) d x$
d. $\int \frac{x^{2}+x}{x+1} d x$
e. $\int \tan ^{2}(x) d x$
f. $\int_{0}^{1} 2 x^{3} e^{x^{2}} d x$
3. Do any four (4) of a-f. [20 $=4 \times 5$ each]
a. Compute $\lim _{x \rightarrow 0} \frac{x}{\tan (x)}$.
b. Use the $\varepsilon-\delta$ definition of limits to verify that $\lim _{x \rightarrow 2}(4 x-7)=1$.
c. At what point (x, y) does the graph of $y=e^{x}$ have a tangent line with slope 2 ?
d. Sketch the region between $y=x+2$ and $y=x^{2}$, for $-1 \leq x \leq 2$, and find its area.
e. Let $f(x)=\left\{\begin{array}{cl}x \ln (x) & x>0 \\ 0 & x \leq 0\end{array}\right.$. Determine whether $f(x)$ is continuous at $x=0$.
f. Suppose $f^{\prime}(x)=x^{2}$ and $f(1)=1$. What is the function $f(x)$?
4. Find the domain, intercepts, vertical and horizontal asymptotes, intervals of increase and decrease, maximum and minimum points, intervals of concavity, and inflection points of $f(x)=\frac{x}{1+x^{2}}$. [15]

Part II. Do one (1) of 5-7.
5. The region between $y=\sqrt{x}$ and $y=x^{2}$, for $0 \leq x \leq 1$, is revolved about the x-axis. Find the volume of the resulting solid. [10]
6. Stick Figure, who is 1.5 m tall, walks at $2 \mathrm{~m} / \mathrm{s}$ on level ground at night, straight towards a $4 m$ tall lit up lamppost. How fast is the tip of Stick's shadow moving along the ground at the instant that Stick is 6 m from the lamppost? [10]

7. Find the maximum possible area of a rectangle whose corners are at $\left(x, 1-x^{2}\right)$, $\left(-x, 1-x^{2}\right),(-x, 0)$, and $(x, 0)$, for some x with $0 \leq x \leq 1$. [10]
$[$ Total $=85]$
Part III. Here be bonus points! Do one or both of $\mathbf{2}^{\mathbf{3}}$ and $\mathbf{3}^{\mathbf{2}}$.
$\mathbf{2}^{\mathbf{3}}$. A dangerously sharp tool is used to cut a cube with a side length of 3 cm into 27 smaller cubes with a side length of 1 cm . This can be done easily with six cuts. Can it be done with fewer? (Rearranging
 the pieces between cuts is allowed.) If so, explain how; if not, explain why not. [1]
$\mathbf{3}^{\mathbf{2}}$. Write a haiku touching on calculus or mathematics in general. [1]

> What is a haiku?
> seventeen in three: five and seven and five of syllables in lines

