Mathematics 1110H – Calculus I: Limits, Derivatives, and Integrals

TRENT UNIVERSITY, Summer 2023 (S61)

Final Examination

19:00-22:00 in ENW 114 on Wednesday, 14 June.

Instructions: Do both of parts I and II, and, if you wish, part III. Please show all your work, justify all your answers, and simplify these where you reasonably can. When you are asked to do k of n questions, only the first k that are not crossed out will be marked. If you have a question, or are in doubt about something, ask!

Aids: Any calculator, as long as it can't communicate with other devices; (all sides of) one letter- or A4-size sheet; one natural intelligence.

Part I. Do all four (4) of 1–4.

1. Compute $\frac{dy}{dx}$ as best you can in any four (4) of **a**-**f**. [20 = 4 × 5 each]

a.
$$y = x \tan(x)$$
 b. $y = \frac{\cos(x)}{x}$ **c.** $y = \int_{1}^{x/2} \cos(t) dt$
d. $y = (x-3)^{10}$ **e.** $y = \ln(1+e^x)$ **f.** $y = \sin^2(\ln(x))$

2. Evaluate any four (4) of the integrals **a**-**f**. $[20 = 4 \times 5 \text{ each}]$

a.
$$\int \frac{x}{x^2 + 1} dx$$
 b. $\int_0^{e^{-1}} \frac{x}{x + 1} dx$ **c.** $\int_0^{\pi} x \cos(x) dx$
d. $\int \frac{x^2 + x}{x + 1} dx$ **e.** $\int \tan^2(x) dx$ **f.** $\int_0^1 2x^3 e^{x^2} dx$

3. Do any four (4) of **a**–**f**. $[20 = 4 \times 5 \text{ each}]$

- **a.** Compute $\lim_{x \to 0} \frac{x}{\tan(x)}$.
- **b.** Use the ε - δ definition of limits to verify that $\lim_{x\to 2} (4x-7) = 1$.
- c. At what point (x, y) does the graph of $y = e^x$ have a tangent line with slope 2?
- **d.** Sketch the region between y = x + 2 and $y = x^2$, for $-1 \le x \le 2$, and find its area.
- e. Let $f(x) = \begin{cases} x \ln(x) & x > 0 \\ 0 & x \le 0 \end{cases}$. Determine whether f(x) is continuous at x = 0.
- **f.** Suppose $f'(x) = x^2$ and f(1) = 1. What is the function f(x)?
- 4. Find the domain, intercepts, vertical and horizontal asymptotes, intervals of increase and decrease, maximum and minimum points, intervals of concavity, and inflection points of $f(x) = \frac{x}{1+x^2}$. [15]

It's not over! Parts II and III are on page 2.

Part II. Do one (1) of **5–7**.

- 5. The region between $y = \sqrt{x}$ and $y = x^2$, for $0 \le x \le 1$, is revolved about the x-axis. Find the volume of the resulting solid. [10]
- 6. Stick Figure, who is 1.5 m tall, walks at 2 m/s on level ground at night, straight towards a 4 m tall lit up lamppost. How fast is the tip of Stick's shadow moving along the ground at the instant that Stick is 6 m from the lamppost? [10]

7. Find the maximum possible area of a rectangle whose corners are at $(x, 1 - x^2)$, $(-x, 1 - x^2)$, (-x, 0), and (x, 0), for some x with $0 \le x \le 1$. [10]

$$|Total = 85|$$

Part III. Here be bonus points! Do one or both of 2^3 and 3^2 .

2³. A dangerously sharp tool is used to cut a cube with a side length of 3 cm into 27 smaller cubes with a side length of 1 cm. This can be done easily with six cuts. Can it be done with fewer? (Rearranging the pieces between cuts is allowed.) If so, explain how; if not, explain why not. [1]

 3^2 . Write a haiku touching on calculus or mathematics in general. [1]

What is a haiku?

seventeen in three: five and seven and five of syllables in lines

ENJOY THE REST OF THE SUMMER!