
Mathematics 1110H – Calculus I: Limits, Derivatives, and Integrals
Trent University, Summer 2023 (S61)

Solutions to the Final Examination
19:00-22:00 in ENW 114 on Wednesday, 14 June.

Instructions: Do both of parts I and II, and, if you wish, part III. Please show all your
work, justify all your answers, and simplify these where you reasonably can. When you
are asked to do k of n questions, only the first k that are not crossed out will be marked.
If you have a question, or are in doubt about something, ask!

Aids: Any calculator, as long as it can’t communicate with other devices; (all sides of)
one letter- or A4-size sheet; one natural intelligence.

Part I. Do all four (4) of 1–4.

1. Compute
dy

dx
as best you can in any four (4) of a–f. [20 = 4 × 5 each]

a. y = x tan(x) b. y =
cos(x)

x
c. y =

∫ x/2

1

cos(t) dt

d. y = (x− 3)10 e. y = ln (1 + ex) f. y = sin2 (ln(x))

Solutions. a. Product Rule.

dy

dx
=

d

dx
(x tan(x)) =

[
d

dx
x

]
tan(x) + x

[
d

dx
tan(x)

]
= 1 tan(x) + x sec2 x

= tan(x) + x sec2(x) �

b. Quotient Rule.

dy

dx
=

d

dx

(
cos(x)

x

)
=

[
d
dx cos(x)

]
x− cos(x)

[
d
dxx
]

x2
=
− sin(x) · x− cos(x) · 1

x2

= −x sin(x) + cos(x)

x2
�

c. Fundamental Theorem of Calculus and Chain Rule.

dy

dx
=

d

dx

(∫ x/2

1

cos(t) dt

)
=

d

du

(∫ u

1

cos(t) dt

)
· du
dx

where u =
x

2

= cos(u) · d
dx

(x
2

)
= cos

(x
2

)
· 1

2
=

1

2
cos
(x

2

)
�

c. Integration and Chain Rule.

dy

dx
=

d

dx

(∫ x/2

1

cos(t) dt

)
=

d

dx

(
sin(t)|x/21

)
=

d

dx

(
sin
(x

2

)
− sin(1)

)
= cos

(x
2

)
· d
dx

(x
2

)
− 0 = cos

(x
2

)
· 1

2
=

1

2
cos
(x

2

)
�
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d. Power Rule and Chain Rule.

dy

dx
=

d

dx
(x− 3)10 = 10(x− 3)9 · d

dx
(x− 3) = 10(x− 3)9 · (1− 0) = 10(x− 3)9 �

e. Chain Rule.

dy

dx
=

d

dx
ln (1 + ex) =

1

1 + ex
· d
dx

(1 + ex) =
1

1 + ex
· (0 + ex) =

ex

1 + ex
�

f. The Chain Rule Rules, with a side of the Power Rule and a trigonometric identity.

dy

dx
=

d

dx
sin2 (ln(x)) = 2 sin (ln(x)) · d

dx
sin (ln(x)) = 2 sin (ln(x)) · cos (ln(x)) · d

dx
ln(x)

= 2 sin (ln(x)) cos (ln(x)) · 1

x
=

sin (2 ln(x))

x
�

2. Evaluate any four (4) of the integrals a–f. [20 = 4 × 5 each]

a.

∫
x

x2 + 1
dx b.

∫ e−1

0

x

x+ 1
dx c.

∫ π

0

x cos(x) dx

d.

∫
x2 + x

x+ 1
dx e.

∫
tan2(x) dx f.

∫ 1

0

2x3ex
2

dx

Solutions. a. Substitution Rule. We will use the substitution u = x2 + 1, so
du

dx
= 2x,

and thus du = 2x dx and x dx = 1
2 du.∫

x

x2 + 1
dx =

∫
1

u
· 1

2
du =

1

2

∫
1

u
du =

1

2
ln(u) + C =

1

2
ln
(
x2 + 1

)
+ C �

b. Substitution Rule. We will use the substitution u = x + 1, so x = u − 1 and
du

dx
= 1,

and thus dx = du. We will also change the limits as we go along:
x 0 e− 1
u 1 e∫ e−1

0

x

x+ 1
dx =

∫ e

1

u− 1

u
du =

∫ e

1

(
1− 1

u

)
du = (u− ln(u))|e1

= (e− ln(e))− (1− ln(1)) = (e− 1)− (1− 0) = e− 2 �

c. Integration by parts. We will use the parts u = x and v′ = cos(x), so u′ = 1 and
v = sin(x).∫ π

0

x cos(x) dx = x sin(x)|π0 −
∫ π

0

1 sin(x) dx = π sin(π)− 0 sin(0)− (− cos(x))|π0

= π · 0− 0 + (cos(x))|π0 = 0 + cos(π)− cos(0) = (−1)− 1 = −2 �
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d. Algebra and the Power Rule. Observe:∫
x2 + x

x+ 1
dx =

∫
x(x+ 1)

x+ 1
dx =

∫
x dx =

x2

2
+ C �

e. A trigonometric identity and a bit of the Power Rule. Observe:∫
tan2(x) dx =

∫ (
sec2(x)− 1

)
dx = tan(x)− x+ C �

f. Substitution and integration by parts. We will first use the substitution w = x2, so
dw

dx
= 2z, and thus dw = 2x dx, and change the limits as we go:

x 0 1
w 0 1∫ 1

0

2x3ex
2

dx =

∫
x2ex

2

2x dx =

∫ 1

0

wew dw

We now apply integration by parts, with u = w and v′ = ew, so u′ = 1 and v = ew.∫ 1

0

2x3ex
2

dx =

∫ 1

0

wew dw = wew|10 −
∫ 1

0

1ew dw = 1e1 − 0e0 − ew|10

= e− 0−
(
e1 − e0

)
= e− e+ 1 = 1 �

3. Do any four (4) of a–f. [20 = 4 × 5 each]

a. Compute lim
x→0

x

tan(x)
.

b. Use the ε–δ definition of limits to verify that lim
x→2

(4x− 7) = 1.

c. At what point (x, y) does the graph of y = ex have a tangent line with slope 2?

d. Sketch the region between y = x + 2 and y = x2, for −1 ≤ x ≤ 2, and find its
area.

e. Let f(x) =

{
xln(x) x > 0

0 x ≤ 0
. Determine whether f(x) is continuous at x = 0.

f. Suppose f ′(x) = x2 and f(1) = 1. What is the function f(x)?

Solutions. a. We will use l’Hôpital’s Rule to help us out, which are permitted to do
because numerator x→ 0 and denominator tan(x)→ 0 as x→ 0.

lim
x→0

x

tan(x)
= lim
x→0

d
dxx

d
dx tan(x)

= lim
x→0

1

sec2(x)
=

1

sec2(0)
=

1

12
= 1 �

b. We need to check that for any ε > 0 one can find a δ > 0 such that if |x − 2| < δ,
then |(4x− 7)− 1| < ε. As is common in such cases, we will tryt to reverse-engineer the
required δ from |(4x− 7)− 1| < ε.

|(4x− 7)− 1| < ε ⇐⇒ |4x− 8| < ε ⇐⇒ |4(x− 2)| < ε

⇐⇒ 4|x− 2| < ε ⇐⇒ |x− 2| < ε

4
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Observe that every step in this process is reversible. It follows that if we are given any

ε > 0 and set δ =
ε

4
, then it will be true that if |x− 2| < δ, then |(4x− 7)− 1| < ε. Thus

lim
x→2

(4x− 7) = 1 by the ε–δ definition of limits. �

c. Since
dy

dx
gives the slope of the tangent line to y = ex at any point at which it is defined,

we need to solve the equation 2 = dy
dx = d

dxe
x = ex. By the definition of the logarithm

function as the inverse function to ex, ex = 2 ⇐⇒ x = ln(2). The corresponding y-value
is [imagine a dramatic drum roll] y = eln(2) = 2. It follows that the graph of y = ex has
slope 2 at the point (x, y) = (ln(2), 2). �

d. Cheating – just a bit! – Here is a sketch of the curves, as drawn by SageMath:

It’s pretty clear from the plot that for x between −1 and 2, y = x− 1 is indeed above
y = x2. It follows that the area of the region between the curves is:

∫ 2

−1

(
x+ 2− x2

)
dx =

(
x2

2
+ 2x− x3

3

)∣∣∣∣2
−1

=

(
22

2
+ 2 · 2− 23

3

)
−
(

(−1)2

2
+ 2(−1)− (−1)3

3

)
=

(
2 + 4− 8

3

)
−
(

1

2
− 2 +

1

3

)
= 8− 9

3
− 1

2
=

9

2
�
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e. By definition, f(x) =

{
xln(x) x > 0

0 x ≤ 0
is continuous at x = 0 if it defined there –

which it is, with f(0) = 0 – and lim
x→0

f(x) = f(0) = 0. It’s pretty obvious that the the

limit as x approaches 0 from the left works: lim
x→0−

f(x) = lim
x→0−

0 = 0. It remains to check

that the limit as x approaches 0 from the right also works.
We will apply l’Hôpital’s Rule after a little algebraic manipulation and a quick check

that we can legitimately apply it.

lim
x→0+

f(x) = lim
x→0+

xln(x) = lim
x→0+

ln(x)
1
x

→ +∞
→ +∞ = lim

x→0+

d
dx ln(x)
d
dx

(
1
x

) = lim
x→0+

1
x

− 1
x2

= lim
x→0+

1

x
·
(
−x

2

1

)
= lim
x→0+

(−x) = 0

Since lim
x→0−

f(x) = lim
x→0+

f(x) = f(0) = 0, we have that lim
x→0

f(x) = f(0) = 0, so f(x) is

indeed continuous at x = 0. �

f. We are given that f ′(x) = x2 and f(1) = 1. The former and the Fundamental Theorem
of Calculus imply, with the help of the Power Rule, that

f(x) =

∫
f ′(x) dx =

∫
x2 dx =

x3

3
+ C

for some unknown constant C. The second fact that we are given, that f(1) = 1, lets us
pin down C:

13

3
+ C = f(1) = 1 =⇒ C = 1− 1

3
=

2

3

Thus f(x) =
x3

3
+

2

3
=
x3 + 2

3
. �

4. Find the domain, intercepts, vertical and horizontal asymptotes, intervals of increase
and decrease, maximum and minimum points, intervals of concavity, and inflection

points of f(x) =
x

1 + x2
. [15]

Solution. We run through the indicated checklist:

i. Domain. Since 1 + x2 ≥ 1 > 0 for all x, the denominator of f(x) =
x

1 + x2
is never 0.

Since f(x) is a ratio of polynomials which are defined, continuous, and differentiable
everywhere, and the denominator is never 0, f(x) is also defined, continuous, and
differentiable for all x.

ii. Intercepts. f(0) =
0

1 + 02
= 0, so the y-intercept is 0, and is also an x-intercept. Since

x

1 + x2
= 0 exactly when the numerator, i.e. x, is 0, (0, 0) is also the only x-intercept.

iii. Vertical and Horizontal Asymptotes. As was noted above, f(x) is defined and con-
tinuous for all x, so it cannot have any vertical asymptotes, which are a type of
discontinuity.
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It remains to check for horizontal asymptotes, which we do with a little help from
l’Hôpital’s Rule, being careful to check that we can legitimately apply it:

lim
x→−∞

f(x) = lim
x→−∞

x

1 + x2
→ −∞
→ +∞ = lim

x→−∞

d
dxx

d
dx (1 + x2)

= lim
x→−∞

1

2x

→ 1
→ −∞ = 0−

lim
x→+∞

f(x) = lim
x→+∞

x

1 + x2
→ +∞
→ +∞ = lim

x→+∞

d
dxx

d
dx (1 + x2)

= lim
x→+∞

1

2x

→ 1
→ +∞ = 0+

Thus y = 0 is a horizontal asymptote for y = f(x) in both directions, which f(x)
approches from below as x→ −∞ and from above as x→ +∞.

iv. Increase/decrease and max/min. We first need to compute the derivative, which we
do with the help of the Quotient and Power Rules.

f ′(x) =
d

dx

(
x

1 + x2

)
=

[
d
dxx
] (

1 + x2
)
− x

[
d
dx

(
1 + x2

)]
(1 + x2)

2

=
1
(
1 + x2

)
− x · 2x

(1 + x2)
2 =

1− x2

(1 + x2)
2

Observe that the denominator of the derivative,
(
1 + x2

)2
, is always positive; in fact,

it is always ≥ 1. It follows that the derivative is defined for all x, and is positive,
negative, or 0, exactly as the numerator is positive, negative, or 0, respectively. Thus:

f ′(x)
<
=
>

0 ⇐⇒ 1− x2
<
=
>

0 ⇐⇒ 1
<
=
>
x2 ⇐⇒

x < −1 or x > 1
x = ±1
−1 < x < 1

It follows that f(x) is decreasing when x < −1 or x > 1, and increasing when −1 <
x < 1, with critical points at x = −1 and x = 1. Since f(x) is decreasing before and
increasing after x = −1, the point (−1, f(−1)) =

(
−1,− 1

2

)
is a minimum point, and

since f(x) is increasing before and decreasing after x = 1, the point (1, f(1)) =
(
1, 12
)

is a maximum point. We summarize all this in a table:

x (−∞,−1) −1 (−1, 1) 1 (1,∞)
f ′(x) − 0 + 0 −
f(x) ↓ − 1

2 ↑ 1
2 ↓

min max

v. Concavity and inflection. We first need to compute the second derivative, which we
do with the help of the Quotient and Power Rules.

f ′′(x) =
d

dx
f ′(x) =

d

dx

(
1− x2

(1 + x2)
2

)
=

[
d
dx

(
1− x2

)] (
1 + x2

)2 − (1− x2) [ ddx (1 + x2
)2](

(1 + x2)
2
)2

=
−2x

(
1 + x2

)2 − (1− x2) 2
(
1 + x2

)
2x

(1 + x2)
4 =

−2x
(
1 + x2

)
− 4x

(
1− x2

)
(1 + x2)

3

=
−2x− 2x3 − 4x+ 4x3

(1 + x2)
3 =

2x3 − 6x

(1 + x2)
3 =

2x
(
x2 − 3

)
(1 + x2)

3
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Observe that the denominator of the second derivative,
(
1 + x2

)3
, is always positive

because 1 + x2 ≥ 1 for all x. It follows that the second derivative is defined for all
x, and is positive, negative, or 0, exactly as the numerator is positive, negative, or 0,
respectively. Thus:

f ′′(x)
<
=
>

0 ⇐⇒ 2x
(
x2 − 3

) <
=
>

0 ⇐⇒
x < 0 and x2 > 3, or x > 0 and x2 < 3
x = 0, or x2 = 3
x < 0 and x2 < 3, or x > 0 and x2 > 3

⇐⇒
x < 0 and x < −

√
3, or x < 0 and x >

√
3, or x > 0 and

√
3 < x <

√
3

x = 0, or x = −
√

3, or x =
√

3
x < 0 and −

√
3 < x <

√
3, or x > 0 and x < −

√
3, or x > 0 and x >

√
3

⇐⇒
x < −

√
3, or 0 < x <

√
3

x = 0, or x = −
√

3, or x =
√

3
−
√

3 < x < 0, or x >
√

3

After eliminating all the
impossible combinations
and the redundancies.

It follows that f(x) is concave down when x < −
√

3 and when 0 < x <
√

3, and
concave up when −

√
3 < x < 0 and when x >

√
3. This also means that we have

inflection points at x = −
√

3, x = 0, and x =
√

3; that is,
(
−
√

3,−
√
3
4

)
, (0, 0), and(√

3,
√
3
4

)
are the inflection points of y = f(x). We summarize all this in a table:

x
(
−∞,−

√
3
)
−
√

3
(
−
√

3, 0
)

0
(
0,
√

3
) √

3
(√

3,∞
)

f ′′(x) − 0 + 0 − 0 +

f(x) _ −
√
3
4 ^ 0 _

√
3
4 ^

infl infl infl

vi. Graph. Cheating again, here is a plot of y =
x

1 + x2
generated by SageMath:

Whew! �
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Part II. Do one (1) of 5–7.

5. The region between y =
√
x and y = x2, for 0 ≤ x ≤ 1, is revolved about the x-axis.

Find the volume of the resulting solid. [10]

Solution. We will find the volume using the disk/washer method and then also the
cylindrical shell method. Here are two sketches of the solid, one with a generic washer
drawn in and one with a generic cylindrical shell drawn in:

i. Disk/washer method. Since we revolved about the x-axis, the washers are perpendicular
to it, so we will use x as our variable.

Observe that for x with 0 ≤ x ≤ 1, x2 ≤
√
x. The washer at x, for some x between 0

and 1, has outer radiusR = y−0 =
√
x−0 =

√
x and inner radius r = y−0 = x2−0 = x2. It

follows that this washer has area A(x) = π
(
R2 − r2

)
= π

(
(
√
x)

2 −
(
x2
)2)

= π
(
x− x4

)
.

Thus the volume of the solid is given by:

V =

∫ 1

0

A(x) dx =

∫ 1

0

π
(
x− x4

)
dx = π

(
x2

2
− x5

5

)∣∣∣∣1
0

= π

(
12

2
− 15

5

)
− π

(
02

2
− 05

5

)
= π

(
1

2
− 1

5

)
− π · 0

= π

(
5

10
− 2

10

)
− 0 =

3π

10

ii. Cylindrical shell method. Since we revolved about the x-axis, the cylindrical shells are
parallel to the x-axis and perpendicular to the y-axis, so we will use y as our variable.
Note that the region has the pleasant property that it has the same same range of y values
as of x values, so 0 ≤ y ≤ 1.

The cylindrical shell at y has radius r = y − 0 = y and height (length?) h =
√
y − y2

– the “upper” is from y = x2 and the “lower” is from y =
√
x – so it has area A(y) =

8



2πrh = 2πy
(√
y − y2

)
= 2π

(
y3/2 − y3

)
. Thus the volume of the solid is given by:

V =

∫ 1

0

A(y) dy =

∫ 1

0

2π
(
y3/2 − y3

)
dy = 2π

(
y5/2

5/2
− y4

4

)∣∣∣∣1
0

= 2π

(
2 · 15/2

5
− 14

4

)
− 2π

(
2 · 05/2

5
− 04

4

)
= 2π

(
2

5
− 1

4

)
− 2π · 0

= 2π

(
8

20
− 5

20

)
− 0 = 2π · 3

20
=

3π

10

Fortunately for us, the two methods agree! :-) �

6. Stick Figure, who is 1.5 m tall, walks at 2 m/s on level ground at night, straight
towards a 4 m tall lit up lamppost. How fast is the tip of Stick’s shadow moving along
the ground at the instant that Stick is 6 m from the lamppost? [10]

Solution. Let x be the distance Stick Figure is from the lamppost and let s be the length

of Stick’s shadow, as in the annotated diagram above. We are given that
dx

dt
= −2 m/s.

(Since Stick is walking stright toward the lamppost, x must be decreasing . . . )
From the setup, the triangle with the lamppost as one side and the tip of Stick’s

shadow as the opposite vertex is similar to the smaller triangle with Stick as one side and
the tip of Stick’s shadow as the opposite vertex. Corresponding sides of similar triangles

must be in the same proportions, e.g.
1.5

4
=

s

x+ s
. Cross-multiplying this equation gives

1.5(x + s) = 4s, so 1.5x = 2.5s, and thus s =
1.5

2.5
x =

3

5
x. The tip of Stick’s shadow is

therefore x+ s = x+
3

5
x =

8

5
x m from the lamppost at any given instant.
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It now follows that Stick’s shadow is moving along the ground at a rate given by:

d

dt
(x+ s) =

d

dt

(
8

5
x

)
=

8

5
· dx
dt

=
8

5
(−2) = −16

5
= −3.2 m/s

(Again, the sign is negative since the tip of the shadow is approaching the lamppost, so the
distance is decreasing.) Since the question only asked for the speed (which notion doesn’t
care about direction) of the tip of Stick’s shadow, 3.2 m/s is a valid answer; one work
through the entire problem without that minus sign . . . �

7. Find the maximum possible area of a rectangle whose corners are at
(
x, 1− x2

)
,(

−x, 1− x2
)
, (−x, 0), and (x, 0), for some x with 0 ≤ x ≤ 1. [10]

Solution. Here is a sketch of the setup:

As should be obvious from the sketch, such a rectangle has base x − (−x) = 2x and
height 1− x2, and thus has area A(x) = base · height = 2x

(
1− x2

)
= 2x− 2x3. Note that

A(0) = A(1) = 0. Following the usual process for finding a maximum or minimum, we
first look for critical points inside the given interval:

A′(x) =
d

dx

(
2x− 2x3

)
= 2 · 1− 2 · 3x2 = 2

(
1− 3x2

)
= 0 ⇐⇒ 1− 3x2 = 0 ⇐⇒ x2 =

1

3
⇐⇒ x = ± 1√

3
≈ ±0.57735

Note that A′(x) is defined and continuous in the interval [0, 1]. The negative solution is
not in the given interval [0, 1], but the positive one is. Evaluating A(x) at x = 1√

3
gives

us:

A

(
1√
3

)
= 2 · 1√

3
− 2

(
1√
3

)3

=
2√
3
− 2

3
√

3
=

6

3
√

3
− 2

3
√

3
=

4

3
√

3
≈ 0.76980

This must be a maximum because it is greater than A(0) = A(1) = 0 and there are no
other critical points inside the given interval.

It follows that the maximum possible area of a rectangle with corners are at
(
x, 1− x2

)
,(

−x, 1− x2
)
, (−x, 0), and (x, 0), for some x with 0 ≤ x ≤ 1, is

4

3
√

3
≈ 0.76980. �
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[Total = 85]

Part III. Here be bonus points! Do one or both of 23 and 32.

23. A dangerously sharp tool is used to cut a cube with a side length of
3 cm into 27 smaller cubes with a side length of 1 cm. This can be
done easily with six cuts. Can it be done with fewer? (Rearranging
the pieces between cuts is allowed.) If so, explain how; if not, explain
why not. [1]

Solution. What’s a solution? :-) �

32. Write a haiku touching on calculus or mathematics in general. [1]

What is a haiku?

seventeen in three:
five and seven and five of

syllables in lines

Solution. What’s a solution? :-) �

Enjoy the rest of the summer!
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