# Mathematics 1110H - Calculus I: Limits, Derivatives, and Integrals <br> Trent University, Summer 2023 (S61) 

## Solutions to Assignment \#5 <br> Right-Hand Rule

Recall from class that the Right-Hand Rule for computing the definite integral of $f(x)$, i.e. weighted area between $y=f(x)$ and the $x$-axis, for $x$ between $a$ and $b$, is:

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty}\left[\sum_{i=1}^{n} \frac{b-a}{n} \cdot f\left(a+i \cdot \frac{b-a}{n}\right)\right]
$$

This actually works as a definition of the definite integral when $f(x)$ is nice enough, such as when it is continuous on $[a, b]$, but even then some basic properties of definite integrals are hard to prove. As a computational method for calculating definite integrals, it's not very useful because even simple integrals can take a while to work through. (See the example we did in class.) In this assignment, you will be asked to do so anyway ... :-)

1. Use the Right-Hand Rule to compute $\int_{1}^{4}\left(x^{2}+1\right) d x$ by hand. [6]

You may find the summation formulas $\sum_{i=1}^{n} i=1+2+3+\cdots+n=\frac{n(n+1)}{2}$ and $\sum_{i=1}^{n} i^{2}=1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$ to be useful in working through 1.
Solution. We have $a=1, b=4$, and $f(x)=x^{2}+1$. We plug these into the Right-Hand Rule formula and work away:

$$
\begin{aligned}
\int_{1}^{4}\left(x^{2}+1\right) d x & =\lim _{n \rightarrow \infty}\left[\sum_{i=1}^{n} \frac{4-1}{n} \cdot\left(\left(1+i \cdot \frac{4-1}{n}\right)^{2}+1\right)\right] \\
& =\lim _{n \rightarrow \infty}\left[\sum_{i=1}^{n} \frac{3}{n} \cdot\left(\left(1+i \cdot \frac{3}{n}\right)^{2}+1\right)\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{3}{n} \cdot \sum_{i=1}^{n}\left(1+2 i \cdot \frac{3}{n}+\left(i \cdot \frac{3}{n}\right)^{2}+1\right)\right] \\
& =\lim _{n \rightarrow \infty} \frac{3}{n} \cdot\left[\sum_{i=1}^{n}\left(2+\frac{6 i}{n}+\frac{9 i^{2}}{n^{2}}\right)\right] \\
& =\lim _{n \rightarrow \infty} \frac{3}{n} \cdot\left[\left(\sum_{i=1}^{n} 2\right)+\left(\sum_{i=1}^{n} \frac{6 i}{n}\right)+\left(\sum_{i=1}^{n} \frac{9 i^{2}}{n^{2}}\right)\right] \\
& =\lim _{n \rightarrow \infty} \frac{3}{n} \cdot\left[2\left(\sum_{i=1}^{n} 1\right)+\frac{6}{n}\left(\sum_{i=1}^{n} i\right)+\frac{9}{n^{2}}\left(\sum_{i=1}^{n} i^{2}\right)\right]
\end{aligned}
$$

At this point we replace each of the sums with the appropriate summation formula, per the comment after the question. Continuing:

$$
\begin{aligned}
\int_{1}^{4}\left(x^{2}+1\right) d x & =\lim _{n \rightarrow \infty} \frac{3}{n} \cdot\left[2\left(\sum_{i=1}^{n} 1\right)+\frac{6}{n}\left(\sum_{i=1}^{n} i\right)+\frac{9}{n^{2}}\left(\sum_{i=1}^{n} i^{2}\right)\right] \\
& =\lim _{n \rightarrow \infty} \frac{3}{n} \cdot\left[2 \cdot n+\frac{6}{n} \cdot \frac{n(n+1)}{2}+\frac{9}{n^{2}} \cdot \frac{n(n+1)(2 n+1)}{6}\right] \\
& =\lim _{n \rightarrow \infty} \frac{3}{n} \cdot\left[2 n+3(n+1)+\frac{3}{2} \cdot \frac{(n+1)(2 n+1)}{n}\right] \\
& =\lim _{n \rightarrow \infty} \frac{3}{n} \cdot\left[5 n+3+\frac{3}{2} \cdot \frac{2 n^{2}+3 n+1}{n}\right] \\
& =\lim _{n \rightarrow \infty} \frac{3}{n} \cdot\left[5 n+3+3 n+\frac{9}{2}+\frac{3}{2 n}\right] \\
& =\lim _{n \rightarrow \infty} \frac{3}{n} \cdot\left[8 n+\frac{15}{2}+\frac{3}{2 n}\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{3}{n} \cdot 8 n+\frac{3}{n} \cdot \frac{15}{2}+\frac{3}{n} \cdot \frac{3}{2 n}\right] \\
& =\lim _{n \rightarrow \infty}\left[24+\frac{45}{2 n}+\frac{9}{2 n^{2}}\right]=24+0+0=24
\end{aligned}
$$

2. Use the Right-Hand Rule to compute $\int_{1}^{4}\left(x^{2}+1\right) d x$ using SageMath. [4]

You may find SageMath's sum command, introduced in the lab of 2023-05-31, and limit command, introduced in the lab of 2023-05-10, to be of use in working through 2.
Solution. Here we go.

```
In [1]: var("n")
    var("i")
    f = function('f')(x)
    f(x) = x^2 + 1
    a = 1
    b = 4
    s = function('s')(n)
    s(n) = sum( (b-a)/n * f(a+i*(b-a)/n),i, 1, n )
    limit(s(n),n=oo)
Out[1]: 24
In [2]: integral(f,x,a,b)
Out[2]: 24
```

Note that this bit of code is fairly general, so one can change the interval of integration and the integrand (i.e. the function being integrated) conveniently. It should work pretty smoothly as long as $f(x)$ is a low-degree polynomial. We also have a check to see if the answer is correct using SageMath's integral command.

