Mathematics 1120H - Calculus II: Integrals and Series
 Trent University, Summer 2021 (S62)

Take-Home Final Examination
Released at noon on Wednesday, 28 July, 2021. Due by noon on Saturday, 31 July, 2021.

Instructions

- You may consult your notes, handouts, and textbook from this course and any other math courses you have taken or are taking now. You may also use a calculator. However, you may not consult any other source, or give or receive any other aid, except for asking the instructor to clarify instructions or questions.
- Please submit an electronic copy of your solutions, preferably as a single pdf (a scan of handwritten solutions should be fine), via the Assignment module on Blackboard. If that doesn't work, please email your solutions to the intructor. Show all your work!
- Do all three (3) of Parts \mathbf{X}, \mathbf{Y}, and \mathbf{Z}, and, if you wish, Part \mathbf{B} as well.

Part X. Do both of $\mathbf{1}$ and $\mathbf{2}$. [$40=2 \times 20$ each]

1. Compute the integrals in any five (5) of $\mathbf{a}-\mathbf{f}$. $[20=5 \times 4$ each $]$
a. $\int_{0}^{\pi / 2} \sin (2 x) \cos ^{2}(x) d x$
b. $\int \frac{x+1}{x^{3}+x} d x$
c. $\int_{1}^{e} x(\ln (x))^{2} d x$
d. $\int_{0}^{\pi / 4} \tan ^{2}(x) \sec ^{2}(x) d x$
e. $\int \frac{\sqrt{1-x^{2}}}{\left(x^{2}-1\right)^{2}} d x$
f. $\int e^{x} \cosh (x) d x$
2. Determine whether the series converges in any five (5) of $\mathbf{a}-\mathbf{f}$. [$20=5 \times 4$ each]
a. $\sum_{n=3}^{\infty} \frac{1}{n \sqrt{\ln (n)}}$
b. $\sum_{n=0}^{\infty} \frac{41^{n}}{n(n+1)}$
c. $\sum_{n=1}^{\infty} \frac{n!\cdot 2^{n}}{(2 n)!}$
d. $\sum_{n=0}^{\infty} \frac{n^{2}-1}{\left(n^{2}+1\right)^{2}}$
e. $\sum_{n=1}^{\infty} \frac{3^{n}}{n!+2^{n}}$
f. $\sum_{n=100}^{\infty} \frac{\sin (n \pi)+\cos (n \pi)}{\ln \left(e^{n}\right)}$

Part Y. Do any three (3) of $\mathbf{3}-\mathbf{6}$. [$30=3 \times 10$ each]
3. Sketch the solid obtained by revolving the region below $y=\sin (x)$ and above $y=$ $-\sin (x)$, for $0 \leq x \leq \pi$, about the y-axis, and find its volume. [10]
4. Find the area of the surface obtained by revolving the curve $y=\frac{x^{3}}{3}$, for $0 \leq x \leq 1$, about the x-axis. [10]
5. Find the area of the region below $y=0$ and above $y=\ln (x)$, where $0<x \leq 1$. [10]
6. Sketch the solid obtained by revolving the region below $y=\sin (x)$ and above $y=-1$, for $0 \leq x \leq 2 \pi$, about the x-axis, and find its volume. [10]

Parts \mathbf{X} and \mathbf{Y} are on the previous page!
Part Z. Do any three (3) of $\mathbf{7} \mathbf{- 1 0}$. $[30=3 \times 10$ each]
7. Determine the radius and interval of convergence of the power series $\sum_{n=0}^{\infty} \frac{n!}{2^{n}} x^{n}$. [10]
8. Consider the function $f(x)=\sin (x)+\sinh (x)$.
a. Use Taylor's formula to find the Taylor series centred at 0 of $f(x)$. [4]
b. Determine the radius and interval of convergence of this Taylor series. [3]
c. Find the Taylor series centred at 0 of $f(x)$ without using Taylor's formula. [3]
9. Find the Taylor series centred at π of $f(x)=\sin (x)$ and determine its radius and interval of convergence. [10]
10. Determine whether the series
$\sum_{n=0}^{\infty}\left[\frac{1}{4 n+1}+\frac{1}{4 n+2}-\frac{1}{4 n+3}-\frac{1}{4 n+4}\right]=1+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}+\frac{1}{5}+\frac{1}{6}-\frac{1}{7}-\frac{1}{8}+\frac{1}{9}+\cdots$
converges absolutely, converges conditionally, or diverges. If it is convergent, find its sum. [10]

$$
[\text { Total }=100]
$$

Part B. . . . is for bonus! If you want to, do one or both of the following problems.
$\boldsymbol{\alpha}$. Write a poem touching on calculus or mathematics in general. [1]
β. A certain mathematician once asserted that $1+2+4+8+\cdots=-1$. What did this unfortunate person do to get this equation? [1]

I HOPE THAT YOU ENJOYED THE COURSE.
Enjoy the rest of the summer!

