
Mathematics 1120H – Calculus II: Integrals and Series
Trent University, Summer 2021 (S62)

Solutions to the Take-Home Final Examination
Released at noon on Wednesday, 28 July, 2021.

Due by noon on Saturday, 31 July, 2021.
Corrected on 2021-07-29.

Instructions

• You may consult your notes, handouts, and textbook from this course and any other
math courses you have taken or are taking now. You may also use a calculator.
However, you may not consult any other source, or give or receive any other aid,
except for asking the instructor to clarify instructions or questions.
• Please submit an electronic copy of your solutions, preferably as a single pdf (a scan

of handwritten solutions should be fine), via the Assignment module on Blackboard.
If that doesn’t work, please email your solutions to the intructor. Show all your work!
• Do all three (3) of Parts X, Y, and Z, and, if you wish, Part B as well.

Part X. Do both of 1 and 2. [40 = 2×20 each]

1. Compute the integrals in any five (5) of a – f. [20 = 5×4 each]

a.

∫ π/2

0

sin(2x) cos2(x) dx b.

∫
x+ 1

x3 + x
dx c.

∫ e

1

x (ln(x))
2
dx

d.

∫ π/4

0

tan2(x) sec2(x) dx e.

∫ √
1− x2

(x2 − 1)
2 dx f.

∫
ex cosh(x) dx

Solutions. a. We will use the trigonometric identity sin(2x) = 2 sin(x) cos(x), followed
by the substitution u = cos(x), so du = − sin(x) dx and sin(x) dx = (−1) du, and change

the limits as we go along:
x 0 π/2
u 1 0

. Here we go:

∫ π/2

0

sin(2x) cos2(x) dx =

∫ π/2

0

2 sin(x) cos(x) cos2(x) dx = 2

∫ π/2

0

cos3(x) sin(x) dx

= 2

∫ 0

1

u3(−1) du = 2

∫ 1

0

u3 du = 2 · u
4

4

∣∣∣∣1
0

=
u4

2

∣∣∣∣1
0

=
14

2
− 04

2

=
1

2
− 0 =

1

2
�

b. We will use partial fractions to decompose the integrand into digestible pieces. First, the
denominator factors easily, x3 + x = x

(
x2 + 1

)
, into a linear factor, x, and an irreducible

quadratic factor, x2 + 1. x2 + 1 is irreducible because x2 + 1 ≥ 1 > 0 for all x, so it has no
roots and hence cannot be factored into linear factors. (Alternatively, using the quadratic
formula gives you roots that are not real numbers.)

Second, it follows from this that we can decompose the integrand in terms of partial

fractions as
x+ 1

x3 + x
=

x+ 1

x (x2 + 1)
=
A

x
+
Bx+ C

x2 + 1
, where A, B, and C are constants.
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Third, we solve for the constants A, B, and C. Putting the right-hand side of the
equation above over a common denominator tells us that:

x+ 1

x (x2 + 1)
=
A

x
+
Bx+ C

x2 + 1
=
A
(
x2 + 1

)
+ (Bx+ C)x

x (x2 + 1)
=

(A+B)x2 + Cx+A

x (x2 + 1)

Thus x+ 1 = (A+ B)x2 + Cx+ A, so we must have A+ B = 0, C = 1 and A = 1, from

which it follows that B = −A = −1, and so
x+ 1

x3 + x
=

x+ 1

x (x2 + 1)
=

1

x
+
−x+ 1

x2 + 1
.

Fourth, we use the partial fraction decomposition of the integrand to break up the
integral and compute it piecemeal:∫

x+ 1

x3 + x
dx =

∫ (
1

x
+
−x+ 1

x2 + 1

)
dx =

∫
1

x
dx−

∫
x

x2 + 1
dx+

∫
1

x2 + 1
dx

In the middle integral we will substitute w = x2 + 1, so dw = 2x dx

and x dx =
1

2
du.

= ln(x)−
∫

1

u
· 1

2
du+ arctan(x) = ln(x)− 1

2
ln(u) + arctan(x) +K

= ln(x)− 1

2
ln
(
x2 + 1

)
+ arctan(x) +K

We used K for the constant of integration because we had already used C in a different way
in a previous step. One could use the properties of logarithms to combine the logarithmic

components in the final answer to get ln

(
x√

x2 + 1

)
+ arctan(x) +K, if one wished to. �

c. We will use integration by parts, with u = (ln(x))
2

and v′ = x, so u′ = 2ln(x) · 1

x
and

v =
x2

2
, and see what we can do:

∫ e

1

x (ln(x))
2
dx =

x2 (ln(x))
2

2

∣∣∣∣∣
e

1

−
∫ e

1

2ln(x) · 1

x
· x

2

2
dx

=

(
e2 (ln(e))

2

2
− 12 (ln(1))

2

2

)
−
∫ e

1

xln(x) dx

We use parts again:
s = ln(x) and t′ = x,

so s′ = 1
x and t = x2

2 .

=

(
e212

2
− 1202

2

)
−
[
x2ln(x)

2

∣∣∣∣e
1

−
∫ e

1

1

x
· x

2

2
dx

]
=

(
e2

2
− 0

)
−
[(

e2ln(e)

2
− 12ln(1)

2

)
− 1

2

∫ e

1

x dx

]
=
e2

2
−
[(

e21

2
− 120

2

)
− 1

2
· x

2

2

∣∣∣∣e
1

]
=
e2

2
−
[(

e2

2
− 0

)
−
(
e2

4
− 12

4

)]
=
e2

2
− e2

2
+
e2

4
− 1

4
=
e2 − 1

4
�
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d. We’ll use the substitution w = tan(x), so dw = sec2(x) dx, and change the limits as we

go along:
x 0 π/4
w 0 1

∫ π/4

0

tan2(x) sec2(x) dx =

∫ 1

0

w2 dw =
w3

3

∣∣∣∣1
0

=
13

3
− 03

3
=

1

3
− 0 =

1

3
�

e. First, observe that∫ √
1− x2

(x2 − 1)
2 dx =

∫ √
1− x2

(1− x2)
2 dx =

∫
1

(1− x2)
3/2

dx .

Second, we will use the trigonometric substitution x = sin(θ), so dx = cos(θ) dθ and(
1− x2

)1/2
=
√

1− x2 =
√

1− sin2(θ) =
√

cos2(θ) = cos(θ).

∫ √
1− x2

(x2 − 1)
2 dx =

∫
1

(1− x2)
3/2

dx =

∫
1[

(1− x2)
1/2
]3 dx =

∫
1

[cos(θ)]
3 cos(θ) dθ

=

∫
1

cos2(θ)
dθ = sec2(θ) dθ = tan(θ) + C =

sin(θ)

cos(θ)
+ C

=
x√

1− x2
+ C �

f. We’ll use the fact that, by definition, cosh(x) =
ex + e−x

2
:

∫
ex cosh(x) dx =

∫
ex · e

x + e−x

2
dx =

∫
exex + exe−x

2
dx =

1

2

∫ (
e2x + e0

)
dx

=
1

2

∫ (
(ex)

2
+ 1
)
dx =

1

2

∫
(ex)

2
dx+

1

2

∫
1 dx

Now substitute u = ex, so du = ex dx, in the first integral.

=
1

2

∫
u du+

x

2
=

1

2
· u

2

2
+
x

2
+ C =

(ex)
2

4
+
x

2
+ C

=
e2x

4
+
x

2
+ C �
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2. Determine whether the series converges in any five (5) of a – f. [20 = 5×4 each]

a.
∞∑
n=3

1

n
√

ln(n)
b.

∞∑
n=0

41n

n(n+ 1)
c.

∞∑
n=1

n! · 2n

(2n)!

d.
∞∑
n=0

n2 − 1

(n2 + 1)
2 e.

∞∑
n=1

3n

n! + 2n
f.

∞∑
n=100

sin(nπ) + cos(nπ)

ln (en)

Solutions. a. This is a task for the Integral Test. Note that the function f(x) =
1

x
√

ln(x)
is positive and decreasing for all x ≥ 3, and that f(n) is the nth term of the series for all
n ≥ 3.

∫ ∞
3

1

x
√

ln(x)
dx = lim

a→∞

∫ a

3

1

x
√

ln(x)
dx

Now substitute u = ln(x), so
du = 1

x dx, and change the

limits:
x 3 a
u ln(3) ln(a)

= lim
a→∞

∫ ln(a)

ln(3)

1√
u
du = lim

a→∞

∫ ln(a)

ln(3)

u−1/2 du

= lim
a→∞

u1/2

1/2

∣∣∣∣ln(a)
ln(3)

lim
a→∞

2
√
u
∣∣ln(a)
ln(3)

= lim
a→∞

(
2
√

ln(a)− 2
√

ln(3)
)

=∞

since ln(a)→∞ as a→∞ and
√

ln(a)→∞ as ln(a)→∞.

By the Integral Test, since the improper integral

∫ ∞
3

1

x
√

ln(x)
dx diverges, so does

the series

∞∑
n=3

1

n
√

ln(n)
. �

b. Divergence Test. With a bit of help from l’Hôpital’s Rule:

lim
n→∞

41n

n(n+ 1)
= lim
x→∞

41x

x(x+ 1)

→∞
→∞ = lim

x→∞

d
dx41x

d
dx (x2 + x)

= lim
x→∞

ln(41)41x

2x+ 1

→∞
→∞

= lim
x→∞

ln(41) d
dx41x

d
dx (2x+ 1)

= lim
x→∞

(ln(41))
2

41x

2

→∞
→ 2

=∞ 6= 0

Since lim
n→∞

41n

n(n+ 1)
6= 0, the Divergence Test tells us that the given series diverges. �
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b. Ratio Test. We plug the terms of this series into the Ratio Test and see what happens.
Notice that all the terms are positive.

lim
n→∞

∣∣∣∣∣∣
41n+1

(n+1)(n+1+1)

41n

n(n+1)

∣∣∣∣∣∣ = lim
n→∞

41n+1

(n+ 1)(n+ 2)
· n(n+ 1)

41n
= lim
n→∞

41n

n+ 2

= lim
n→∞

41n

n+ 2
·

1
n
1
n

= lim
n→∞

41

1 + 2
n

=
41

1 + 0
= 41 > 1

Since the limit asked for by the Ratio Test is greater than 1, the series
∞∑
n=0

41n

n(n+ 1)

diverges. �

c. This one is tailor-made for the Ratio Test, as the terms are built using multiplication
and division only. Notice that all the terms are positive.

lim
n→∞

∣∣∣∣∣∣
(n+1)!·2n+1

(2(n+1))!

n!·2n
(2n)!

∣∣∣∣∣∣ = lim
n→∞

(n+ 1)! · 2n+1

(2(n+ 1))!
· (2n)!

n! · 2n
= lim
n→∞

(n+ 1) · 2
(2n+ 2)(2n+ 1)

= lim
n→∞

1

2n+ 1

→ 1
→∞ = 0 < 1

Since the limit asked for by the Ratio Test is less than 1, the given series converges. �

Note: The series in c can also be shown to be convergent with the Comparison Test – try

comparing it to the series
∞∑
n=1

4

n2
– but there is a fair bit of algebra to wade through . . .

d. We will use the Limit Comparison Test to compare the given series,
∞∑
n=0

n2 − 1

(n2 + 1)
2 (note

that all the terms past n = 1 are positive), to the series
∞∑
n=1

1

n2
.

lim
n→∞

n2−1
(n2+1)2

1
n2

= lim
n→∞

n2 − 1

(n2 + 1)
2 ·

n2

1
= lim
n→∞

n4 − n2

n4 + 2n2 + 1
= lim
n→∞

n4 − n2

n4 + 2n2 + 1
·

1
n4

1
n4

= lim
n→∞

1− 1
n2

1 + 2
n2 + 1

n4

=
1− 0

1 + 0 + 0
= 1 as

1

n2
→ 0 and

1

n4
→ 0 as n→∞.

Since the series
∞∑
n=1

1

n2
converges by the p-Test since it has p = 2 > 1, it follows by the

Limit Comparison test that the original series converges as well. �

e. Observe that for all n ≥ 0, 0 ≤ 3n

n! + 2n
≤ 3n

n!
since decreasing the denominator

increases the fraction. The Basic Comparison Test will therefore allow us to conclude that
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the given series converges as long as we can verify that

∞∑
n=0

3n

n!
converges. We verify that

it does so using the Ratio Test:

lim
n→∞

∣∣∣∣∣∣
3n+1

(n+1)!

3n

n!

∣∣∣∣∣∣ = lim
n→∞

3n+1

(n+ 1)!
· n!

3n
= lim
n→∞

3

n+ 1

→ 3
→∞ = 0 < 1

It follows by the Ratio Test that
∞∑
n=0

3n

n!
converges, and hence, by the Comparison Test,

that
∞∑
n=0

3n

n! + 2n
converges as well. �

f. sin(x) = 0 whenever x is an integer multiple of π, so sin(nπ) = 0 for all n. On the other
hand, cos(x) is ±1 when x is an integer multiple of π, with cos(nπ) = 1 when n is even
and cos(nπ) = −1 when n is odd, so cos(nπ) = (−1)n for all n. Also, since ln(x) and ex

are each other’s inverse functions, ln (en) = n for all n ≥ 1. It follows that the given series,

∞∑
n=100

sin(nπ) + cos(nπ)

ln (en)
=

∞∑
n=100

0 + (−1)n

n

∞∑
n=100

(−1)n

n
,

is the alternating harmonic series in disguise. This converges by the Alternating Series
Test since the series satisfies the necessary conditions:

i. The series alternates sign because
1

n
> 0 for all n > 0 and (−1)n alternates sign.

ii. For all n > 0,

∣∣∣∣ (−1) + 1

n+ 1

∣∣∣∣ =
1

n+ 1
<

1

n
=

∣∣∣∣ (−1)n

n

∣∣∣∣, i.e. the terms of the series

decrease in absolute value.

iii. lim
n→∞

∣∣∣∣ (−1)n

n

∣∣∣∣ = lim
n→∞

1

n
= 0.

It follows that the given series converges. �
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Part Y. Do any three (3) of 3 – 6. [30 = 3×10 each]

3. Sketch the solid obtained by revolving the region below y = sin(x) and above y =
− sin(x), for 0 ≤ x ≤ π, about the y-axis, and find its volume. [10]

Solution. Here is sketch of the solid, with the cylindrical shell at x drawn in:

As one might guess from the inclusion of a cylindrical shell in the sketch, we will use
the method of cylindrical shells to compute the volume of the solid. Since we rotated
the region about the y-axis, the shells are perpendicular to the x-axis, and so we use x
as our variable. The cylindrical shell at x has radius r = x − 0 = x and height h =
sin(x)−(− sin(x)) = 2 sin(x), and hence has area 2πrh = 2πx ·2 sin(x) = 4πx sin(x). Since
the original region had 0 ≤ x ≤ π, the volume of this solid of revolution is:

Volume =

∫ π

0

2πrh dx =

∫ π

0

4πx sin(x) dx = 4π

∫ π

0

x sin(x) dx

We’ll use integration by parts, with u = x and v′ = sin(x),

so u′ = 1 and v = − cos(x).

= 4π

(
−x cos(x)|π0 −

∫ π

0

1 (− cos(x)) dx

)
= 4π

(
[(−π cos(π))− (−0 cos(0))] +

∫ π

0

cos(x) dx

)
= 4π ([−π(−1)− 0] + sin(x)|π0 )

= 4π (π + [sin(π)− sin(0)])

= 4π (π + [0− 0]) = 4π2 �
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4. Find the area of the surface obtained by revolving the curve y =
x3

3
, for 0 ≤ x ≤ 1,

about the x-axis. [10]

Solution. Although it’s not needed, here is a sketch of the surface:

Since
dy

dx
=

d

dx

(
x3

3

)
=

3x2

3
= x2, the chunk of arc-length at x is given by

ds =

√
1 +

(
dy

dx

)2

dx =

√
1 + (x2)

2
dx =

√
1 + x4 dx .

This chunk of arc-length is revolved around the x-axis through a circle with radius r =

y − 0 =
x3

3
which has circumference 2πr = 2π

x3

3
. It follows that the area of the surface

obtained by revolving the curve y =
x3

3
, for 0 ≤ x ≤ 1, about the x-axis is:

Surface Area =

∫ 1

0

2πr ds =

∫ 1

0

2π
x3

3

√
1 + x4 dx =

2π

3

∫ 1

0

x3
√

1 + x4 dx

We substitute w = 1 + x4, so dw = 4x3 dx and x3 dx =
1

4
dw,

and change the limits accordingly:
x 0 1
w 1 2

=
2π

3

∫ 2

1

√
w

1

4
dw =

2π

3
· 1

4

∫ 2

1

w1/2 dw =
π

6
· w

3/2

3/2

∣∣∣∣2
1

=
π

6
· 2

3
w3/2

∣∣∣∣2
1

=
π

9
w3/2

∣∣∣2
1

=
π

9
23/2 − π

9
13/2 =

π

9

(
2
√

2− 1
)

�
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5. Find the area of the region below y = 0 and above y = ln(x), where 0 < x ≤ 1. [10]

Solution. Although it’s not needed, here is a sketch of the region:

The area integral is easy enough to set up:

Area =

∫ 1

0

(0− ln(x)) dx = −
∫ 1

0

ln(x) dx =

∫ 0

1

ln(x) dx

Since ln(x) has a vertical asymptote at 0, though, this is an improper integral and should
be computed accordingly:

Area =

∫ 0

1

ln(x) dx = lim
a→0+

∫ a

1

ln(x) dx
We now use parts, with u = ln(x)
and v′ = 1, so u′ = 1

x and v = x.

= lim
a→0+

[
xln(x)−

∫
1

x
· x dx

]a
1

= lim
a→0+

[
xln(x)−

∫
1 dx

]a
1

= lim
a→0+

[xln(x)− x]
a
1

= lim
a→0+

[(aln(a)− a)− (1 · ln(1)− 1)] = lim
a→0+

[aln(a)− a− 1 · 0 + 1]

=

[
lim
a→0+

aln(a)

]
−
[

lim
a→0+

a

]
− 0 + 1 =

[
lim
a→0+

ln(a)
1
a

→ −∞
→ +∞

]
− 0− 0 + 1

We’ll use l’Hôpital’s Rule to compute the indeterminate limit.

=

[
lim
a→0+

d
da ln(a)
d
da

(
1
a

) ]+ 1 =

[
lim
a→0+

1
a
−1
a2

]
+ 1 =

[
lim
a→0+

1

a
· a

2

−1

]
+ 1 =

[
lim
a→0+

(−a)

]
+ 1

= −0 + 1 = 1 �
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6. Sketch the solid obtained by revolving the region below y = sin(x) and above y = −1,
for 0 ≤ x ≤ 2π, about the x-axis line y = −1, and find its volume. [10]

Solution. Here is sketch of the solid, with the disk at x drawn in:

As one might guess from the inclusion of a disk in the sketch, we will use the
disk/washer method to compute the volume of the solid. Note that since the axis of
revolution is part of the region’s border, the cross-sections are disks rather than washers.
Since we rotated the region about the horizontal line y = −1, the cross-sectional disks are
perpendicular to the x-axis, and so we use x as our variable. The disk at x has radius
r = sin(x) − (−1) = sin(x) + 1 and hence area πr2 = π (sin(x) + 1)

2
. Since the original

region had 0 ≤ x ≤ 2π, the volume of this solid of revolution is:

Volume =

∫ 2π

0

πr2 dx =

∫ 2π

0

π (sin(x) + 1)
2
dx = π

∫ 2π

0

(
sin2(x) + 2 sin(x) + 1

)
dx

= π

∫ 2π

0

sin2(x) dx+ π

∫ 2π

0

2 sin(x) dx+ π

∫ 2π

0

1 dx

= π

[
−1

2
sin2−1(x) cos(x) +

2− 1

2

∫
sin2−2(x) dx

]2π
0

+ 2π (− cos(x))|2π0 + πx|2π0

= π

[
−1

2
sin(x) cos(x) +

1

2

∫
1 dx

]2π
0

+ 2π [− cos(2π)− (− cos(0))] + [π · 2π − π · 0]

= π

[
−1

2
sin(x) cos(x) +

x

2

]2π
0

+ 2π [−1− (−1)] +
[
2π2 − 0

]
= π

[(
−1

2
sin(2π) cos(2π) +

2π

2

)
−
(
−1

2
sin(0) cos(0) +

0

2

)]
+ 2π · 0 + 2π2

= π

[(
−1

2
· 0 · 1 + π

)
−
(
−1

2
· 0 · 1 + 0

)]
+ 0 + 2π2

= π [(0 + π)− (0 + 0)] + 2π2 = π2 + 2π2 = 3π2 �
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Part Z. Do any three (3) of 7 – 10. [30 = 3×10 each]

7. Determine the radius and interval of convergence of the power series
∞∑
n=0

n!

2n
xn. [10]

Solution. We will attack this using the Ratio Test, as usual.∗

lim
n→∞

∣∣∣∣∣
(n+1)!
2n+1 x

n+1

n!
2nx

n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣ (n+ 1)!xn+1

2n+1
· 2n

n!xn

∣∣∣∣ = lim
n→∞

∣∣∣∣ (n+ 1)x

2

∣∣∣∣
= lim
n→∞

(n+ 1)|x|
2

=

{ ∞ x 6= 0

0 x = 0

Since ∞ > 1 and 0 < 1, it follows by the Ratio Test that this power series, which is
centred at 0, diverges when x 6= 0 and converges only when x = 0. That is, its radius of
convergence is R = 0 and its interval of convergence is [0, 0] = {0}. �

8. Consider the function f(x) = sin(x) + sinh(x).

a. Use Taylor’s formula to find the Taylor series centred at 0 of f(x). [4]

b. Determine the radius and interval of convergence of this Taylor series. [3]

c. Find the Taylor series centred at 0 of f(x) without using Taylor’s formula. [3]

Solutions. a. Recall that sinh(x) =
ex − e−x

2
,
d

dx
sinh(x) = cosh(x) =

ex + e−x

2
, and

d

dx
cosh(x) = sinh(x), in contrast with

d

dx
sin(x) = cos(x) and

d

dx
cos(x) = sin(x). Note

that sin(0) = sinh(0) = 0 and cos(0) = cosh(0) = 1. We will generate the usual table for
f (n)(0) and attempt to spot a pattern.

n f (n)(x) f (n)(0)
0 sin(x) + sinh(x) 0
1 cos(x) + cosh(x) 2
2 − sin(x) + sinh(x) 0
3 − cos(x) + cosh(x) 0
4 sin(x) + sinh(x) 0
5 cos(x) + cosh(x) 2
6 − sin(x) + sinh(x) 0
7 − cos(x) + cosh(x) 0
8 sin(x) + sinh(x) 0
9 cos(x) + cosh(x) 2
...

...
...

∗ Another reason is that the main alternative, the Root Test, would have us dealing with (n!)1/n,
which would be a pain even with with the help of Stirling’s formula, which states that for large n, n! is

approximately
√
2πn

(
n

e

)n

.
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The pattern here is not hard to discern: when n = 4k+1 for some k ≥ 0, then f (n)(0) = 2,
and otherwise f (n)(0) = 0. Plugging this into Taylor’s formula, it follows that the Taylor
series centred at 0 of f(x) = sin(x) + sinh(x) is:

∞∑
n=0

f (n)(0)

n!
xn =

∞∑
k=0

f (4k+1)(0)

(4k + 1)!
x4k+1 =

∞∑
k=0

2

(4k + 1)!
x4k+1

= 2x+
2

120
x5 +

2

362880
x9 + · · · �

b. To find the radius and interval of convergence of the series obtained above, we once
again begin with the Ratio Test.

lim
k→∞

∣∣∣∣∣
2

(4(k+1)+1)!x
4(k+1)+1

2
(4k+1)!x

4k+1

∣∣∣∣∣ = lim
k→∞

∣∣∣∣ 2x4k+5

(4k + 5)!
· (4k + 1)!

2x4k+1

∣∣∣∣
= lim
k→∞

x4

(4k + 5)(4k + 4)(4k + 3)(4k + 2)

→ x4

→∞ = 0

Since 0 < 1, it follows by the Ratio Test that the Taylor series centred at 0 of f(x) =
sin(x) + sinh(x) converges for all x, so it has radius of convergence R =∞ and interval of
convergence (−∞,∞). �

c. Recall that the Taylor series centred at 0 of sin(x) is
∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
and that the

Taylor series centred at 0 of ex is
∞∑
n=0

xn

n!
. Substituting −x in for x in the latter series tells

us that the Taylor series centred at 0 of e−x is
∞∑
n=0

(−1)nxn

n!
. It follows that the Taylor

series centred at 0 of sinh(x) =
ex − e−x

2
is:

(∑∞
n=0

xn

n!

)
−
(∑∞

n=0
(−1)nxn

n!

)
2

=

(
1 + x+ x2

2 + x3

6 + · · ·
)
−
(

1− x+ x2

2 −
x3

6 + · · ·
)

2

=
1

2

(
2x+ 2

x3

6
+ 2

x5

120
+ · · ·

)
= x+

x3

6
+

x5

120
+ · · ·

=
∑

n = 0∞
x2n+1

(2n+ 1)!

This, in turn, means that the Taylor series centred at 0 of f(x) = sin(x) + sinh(x) is:[ ∞∑
n=0

(−1)nx2n+1

(2n+ 1)!

]
+

[ ∞∑
n=0

x2n+1

(2n+ 1)!

]
=

[
x− x3

6
+

x5

120
− · · ·

]
+

[
x+

x3

6
+

x5

120
+ · · ·

]

= 2x+
2x5

120
+

2x9

362880
+ · · · =

∞∑
k=0

2x4k+1

(4k + 1)!
�
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9. Find the Taylor series centred at π of f(x) = sin(x) and determine its radius and
interval of convergence. [10]

Solution. Recall that
d

dx
sin(x) = cos(x) and

d

dx
cos(x) = sin(x), and that sin(π) = 0

and cos(π) = −1. We will generate the usual table for f (n)(π) and attempt to spot a
pattern.

n f (n)(x) f (n)(π)
0 sin(x) 0
1 cos(x) −1
2 − sin(x) 0
3 − cos(x) 1
4 sin(x) 0
5 cos(x) −1
6 − sin(x) 0
7 − cos(x) 1
...

...
...

It is not hard to see that when n is even, f (n)(π) = 0, and when n is odd, f (n)(π) is
alternately −1 and 1, starting with −1 when n = 1, i.e. f (2k+1)(π) = (−1)k+1 for k ≥ 0.
Plugging all this into Taylor’s formula, the Taylor series centred at π of sin(x) is:

∞∑
n=0

f (n)(0)

n!
(x− π)n =

∞∑
k=0

f (2k+1)(π)

(2k + 1)!
(x− π)2k+1 =

∞∑
k=0

(−1)k+1

(2k + 1)!
(x− π)2k+1

= −(x− π) +
(x− π)3

6
− (x− π)5

120
+ · · ·

To determine the radius and interval of convergence of this Talor series, we haul out
the Ratio Test again.

lim
k→∞

∣∣∣∣∣∣
(−1)(k+1)+1

(2(k+1)+1)! (x− π)2(k+1)+1

(−1)k+1

(2k+1)! (x− π)2k+1

∣∣∣∣∣∣ = lim
k→∞

∣∣∣∣ (−1)k+3(x− π)2k+3

(2k + 3)!
· (2k + 1)!

(−1)k+1(x− π)2k+1

∣∣∣∣
= lim
k→∞

∣∣∣∣ (−1)2(x− π)2

(2k + 3)(2k + 2)

∣∣∣∣
= lim
k→∞

(x− π)2

(2k + 3)(2k + 2)

→ (x− π)2

→∞ = 0

Since 0 < 1 it follows by the Ratio Test that the series converges for all x; that is, its
radius of convergence is R =∞ and its interval of convergence is (−∞,∞). �
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10. Determine whether the series
∞∑
n=0

[
1

4n+ 1
+

1

4n+ 2
− 1

4n+ 3
− 1

4n+ 4

]
= 1+

1

2
− 1

3
− 1

4
+

1

5
+

1

6
− 1

7
− 1

8
+

1

9
+ · · ·

converges absolutely, converges conditionally, or diverges. If it is convergent, find its
sum. [10]

Solution. What follows is pretty verbose, mainly because this is probably the most
challenging question on this exam. (It was marked pretty generously because of this, too.)
Most of the computation of the sum of the series in the latter part of this solution is
adapted from a student’s∗ solution, as being better than what I had originally come up
with.

We first tackle the problem of whether the given series converges. Since the corre-
sponding series of positive terms is the harmonic series, which diverges, we do not have
absolute convergence. Unfortunately, the pattern of alternation in the given series, ++−−,
is not the pattern, +−+−, required to apply the Alternating Series Test. We work around
these problems by rewriting the series by combining terms within each group of four con-
secutive terms:

1

4n+ 1
+

1

4n+ 2
− 1

4n+ 3
− 1

4n+ 4
=

1

4n+ 1
− 1

4n+ 3
+

1

4n+ 2
− 1

4n+ 4

=
(4n+ 3)− (4n+ 1)

(4n+ 1)(4n+ 3)
+

(4n+ 2)− (4n+ 4)

(4n+ 2)(4n+ 4)

=
2

(4n+ 1)(4n+ 3)
+

2

(4n+ 2)(4n+ 4)

This converts our original series into a series,
∞∑
n=0

[
2

(4n+ 1)(4n+ 3)
+

2

(4n+ 2)(4n+ 4)

]
,

of positive terms. Since every fourth partial sum of the original series will be equal to
every second partial sum of the new series, the original series will converge exactly when
(and have the same sum as) the new series converges. Note that since the new series is
composed entirely of positive terms, it will converge absolutely if it converges at all, which
permits us to rearrange the terms as we like, so long as all the terms get used eventually.
This, in turn, means that we can split the new series into two series:

∞∑
n=0

[
1

4n+ 1
+

1

4n+ 2
− 1

4n+ 3
− 1

4n+ 4

]

=
∞∑
n=0

[
2

(4n+ 1)(4n+ 3)
+

2

(4n+ 2)(4n+ 4)

]

=

[ ∞∑
n=0

2

(4n+ 1)(4n+ 3)

]
+

[ ∞∑
n=0

2

(4n+ 2)(4n+ 4)

]
∗ Thank you, Anika! :-)
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We will use the Limit Comparison Test to show that each of the two series converges by

comparison with

∞∑
n=0

1

n2
, which itself converges by the p-Test since it has p = 2 > 1. Since

lim
n→∞

∣∣∣∣∣
2

(4n+1)(4n+3)

1
n2

∣∣∣∣∣ = lim
n→∞

2

(4n+ 1)(4n+ 3)
· n

2

1
= lim
n→∞

2n2

16n2 + 16n+ 3

= lim
n→∞

2n2

16n2 + 16n+ 3
·

1
n2

1
n2

= lim
n→∞

2

16 + 16
n + 3

n2

=
2

16 + 0 + 0
=

1

8

and 0 < 1
8 < ∞, we have that

∞∑
n=0

2

(4n+ 1)(4n+ 3)
converges because

∞∑
n=0

1

n2
does so.

Similarly, since

lim
n→∞

∣∣∣∣∣
2

(4n+2)(4n+4)

1
n2

∣∣∣∣∣ = lim
n→∞

2

(4n+ 2)(4n+ 4)
· n

2

1
= lim
n→∞

2n2

16n2 + 24n+ 8

= lim
n→∞

2n2

16n2 + 24n+ 8
·

1
n2

1
n2

= lim
n→∞

2

16 + 24
n + 8

n2

=
2

16 + 0 + 0
=

1

8

and 0 < 1
8 < ∞, we also have that

∞∑
n=0

2

(4n+ 2)(4n+ 2)
converges because

∞∑
n=0

1

n2
does

so.

Putting all this together, the facts that
∞∑
n=0

2

(4n+ 1)(4n+ 3)
and

∞∑
n=0

2

(4n+ 2)(4n+ 2)

are series of positive terms that converge (absolutely!) means that their rearranged sum,
∞∑
n=0

[
2

(4n+ 1)(4n+ 3)
+

2

(4n+ 2)(4n+ 4)

]
, converges too. Since this series has every sec-

ond partial sum equal to every fourth partial sum of the original series,

∞∑
n=0

[
1

4n+ 1
+

1

4n+ 2
− 1

4n+ 3
− 1

4n+ 4

]
,

it follows that the original series converges too, and to the same sum that

∞∑
n=0

[
2

(4n+ 1)(4n+ 3)
+

2

(4n+ 2)(4n+ 4)

]

does.

This begs the question, what is the sum of the given series? We will find it by first
partially undoing some of our manipulations above, and then appealing to what we learned
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earlier in the course. Here goes:

∞∑
n=0

[
1

4n+ 1
+

1

4n+ 2
− 1

4n+ 3
− 1

4n+ 4

]

=

∞∑
n=0

[
2

(4n+ 1)(4n+ 3)
+

2

(4n+ 2)(4n+ 4)

]

=

[ ∞∑
n=0

2

(4n+ 1)(4n+ 3)

]
+

[ ∞∑
n=0

2

(4n+ 2)(4n+ 4)

]

=

[ ∞∑
n=0

(
1

4n+ 1
− 1

4n+ 3

)]
+

[ ∞∑
n=0

(
1

4n+ 2
− 1

4n+ 4

)]

=

[
1− 1

3
+

1

5
− 1

7
+ · · ·

]
+

[
1

2
− 1

4
+

1

6
− 1

8
+ · · ·

]
=

[
1− 1

3
+

1

5
− 1

7
+ · · ·

]
+

1

2

[
1− 1

2
+

1

3
− 1

4
+ · · ·

]

We summed the series 1 − 1

3
+

1

5
− 1

7
+ · · · in question 6 of Assignment #4. To

summarize, integrating both sides of
1

1 + x2
=

1

1− (−x2)
= 1 − x2 + x4 − x6 + · · · and

solving for the constant of integration yields arctan(x) = x− x
3

3
+
x5

5
− x

7

7
+ · · · . Plugging

x = 1 into the latter equation then yields:

1− 1

3
+

1

5
− 1

7
+ · · · = arctan(1) =

π

4

We also summed the series 1 − 1

2
+

1

3
− 1

4
+ · · · in Assignmnent #4, in question 6.

Tu summarize, integrating both sides of
1

1 + x
=

1

1− (−x)
= 1 − x + x2 − x3 + · · · and

solving for the constant of integration yields ln(1 +x) = x− x
2

2
+
x3

3
− x

4

4
+ · · · . Plugging

x = 1 into this equation the yields:

1− 1

2
+

1

3
− 1

4
+ · · · = ln(1 + 1) = ln(2)

16



Putting all of this together gives us:

∞∑
n=0

[
1

4n+ 1
+

1

4n+ 2
− 1

4n+ 3
− 1

4n+ 4

]
=1 +

1

2
− 1

3
− 1

4
+

1

5
+

1

6
− 1

7
− 1

8
+ · · ·

=

[
1− 1

3
+

1

5
− 1

7
+ · · ·

]
+

[
1

2
− 1

4
+

1

6
− 1

8
+ · · ·

]
=

[
1− 1

3
+

1

5
− 1

7
+ · · ·

]
+

1

2

[
1− 1

2
+

1

3
− 1

4
+ · · ·

]
=
π

4
+

1

2
ln(2) �

[Total = 100]

Part B. . . . is for bonus! If you want to, do one or both of the following problems.

ααα. Write a poem touching on calculus or mathematics in general. [1]

Solution. I think the Danish architect and poet Piet Hein said it best, in his own twisted
way, in the following “grook”:

Last Things First

Solutions to problems
are easy to find:

the problem’s a great
contribution.

What is truly an art
is to wring from your mind

a problem to fit
a solution.

Way too much research in math seems to work this way . . . :-) �

βββ. A certain mathematician once asserted that 1 + 2 + 4 + 8 + · · · = −1. What did this
unfortunate person do to get this equation? [1]

Solution. This is another solution adapted from one given by a student† that is superior
to my own:

The unfortunate who finds
∑∞
n=0 2n = 1 + 2 + 4 + 8 + · · · to be −1 has

done one thing to get this answer: A mistake.

Indeed! :-) �

I hope that you enjoyed the course.
Enjoy the rest of the summer!

† Thank you, David! :-)
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