# Mathematics 1120H - Calculus II: Integrals and Series 

Trent University, Summer 2021 (S62)

## Assignment \#1

The easy way and the hard way ...
Due on Friday, 25 June.
Submission: Scanned or photographed solutions are fine, so long as they are legible. Please try to make sure that they are oriented correctly - if they are sideways or upside down, they're rather harder to mark online. Submission as a single pdf is strongly preferred, but other common formats are probably OK in a pinch. Please submit your solutions via Blackboard's Assignments module. If Blackboard does not acknowledge a successful upload, please try again. As a last resort, email your solutions to the instructor at: sbilaniuk@trentu.ca

In this assignment you will attempt to compute the area of the region between the curve $y=x^{3} \sin \left(x^{2}\right)$ for $0 \leq x \leq \sqrt{\pi}$, pictured below ${ }^{1}$, and the $x$-axis.


As suggested by the title of this assignment, you will try to do this twice, with one method likely being easier than the other.

1. Find the antiderivative of $f(x)=x^{3} \sin \left(x^{2}\right)$ and use it, along with the Fundamental Theorem of Calculus, to compute the area of the region given above. [4]
2. Find the area of the region given above, as accurately as you can, entirely by hand ${ }^{2}$ and without using the Fundamental Theorem of Calculus in any way. [6]
[^0]
[^0]:    1 This graph was generated by SageMath using the command: plot ( $\left.x^{\wedge} 3 * \sin \left(x^{\wedge} 2\right), 0, \operatorname{sqrt}(p i)\right)$
    2 With one exception: you may use a calculator to help with your arithmetic, up to and including computing (approximate) values of $f(x)=x^{3} \sin \left(x^{2}\right)$.

