Mathematics 1120H - Calculus II: Integrals and Series
 Trent University, Winter 2020

Solutions to Assignment \#4
 A Little Series Algebra

The series $\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+x^{4}+\cdots$ is a geometric series with first term $a=1$ and common ratio $r=x$, and so adds up to $\frac{a}{1-r}=\frac{1}{1-x}$ when $|r|=|x|<1$. For questions $\mathbf{1}$ and $\mathbf{2}$ you may assume that $|x|<1$, so that the series adds up nicely.

1. Find a series $\sum_{n=0}^{\infty} a_{n} x^{n}$ such that $\sum_{n=0}^{\infty} a_{n} x^{n}=\left(\sum_{n=0}^{\infty} x^{n}\right)^{2}$. [4]

Solution. We will take a low-tech brute force approach here and work out $\left(\sum_{n=0}^{\infty} x^{n}\right)^{2}$ by multiplying it out and collecting like terms:

$$
\begin{gathered}
\left(\sum_{n=0}^{\infty} x^{n}\right)^{2}=\left(1+x+x^{2}+x^{3}+x^{4}+\cdots\right)\left(1+x+x^{2}+x^{3}+x^{4}+\cdots\right) \\
=1\left(1+x+x^{2}+x^{3}+x^{4}+\cdots\right) \\
+x\left(1+x+x^{2}+x^{3}+x^{4}+\cdots\right) \\
+x^{2}\left(1+x+x^{2}+x^{3}+x^{4}+\cdots\right) \\
+x^{3}\left(1+x+x^{2}+x^{3}+x^{4}+\cdots\right) \\
\vdots \\
=1+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}+\cdots \\
+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}+\cdots \\
+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}+\cdots \\
\quad+x^{3}+x^{4}+x^{5}+x^{6}+\cdots \\
\vdots \\
=1+2 x+3 x^{2}+4 x^{3}+5 x^{4}+6 x^{5}+7 x^{6}+\cdots
\end{gathered}
$$

The desired series is therefore $\sum_{n=0}^{\infty}(n+1) x^{n}=1+2 x+3 x^{2}+4 x^{3}+5 x^{4}+\cdots$.
2. Find a series $\sum_{n=0}^{\infty} b_{n} x^{n}$ such that $\left(\sum_{n=0}^{\infty} x^{n}\right)\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)=1$. [1]

Solution. Recall that the geometric series sum formula tells us that $\sum_{n=0}^{\infty} x^{n}=1+x+$ $x^{2}+x^{3}+x^{4}+\cdots=\frac{1}{1-x}$. This gives us a clue, namely that

$$
\left(1+x+x^{2}+x^{3}+x^{4}+\cdots\right)(1-x)=1
$$

Since $1-x=1-x+0 x^{2}+0 x^{3}+0 x^{4}+\cdots$, the series $\sum_{n=0}^{\infty} b_{n} x^{n}$ with $b_{0}=1, b_{1}=-1$, and $b_{n}-0$ for $n \geq 2$ does the job. Note that pretty much everyone who isn't a total mathochist would write this series simply as $1-x$.

Recall from Assignment \#3 that $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\cdots$. This series actually converges for all x, as we shall see later.
3. Find a series $\sum_{n=0}^{\infty} c_{n} x^{n}$ such that $\sum_{n=0}^{\infty} c_{n} x^{n}=\left(\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\right)^{2}$. [3]

Solution. We exploit the fact that we know that $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ for all x repeatedly:

$$
\left(\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\right)^{2}=\left(e^{x}\right)^{2}=e^{2 x}=\sum_{n=0}^{\infty} \frac{(2 x)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{2^{n} x^{n}}{n!}=\sum_{n=0}^{\infty} \frac{2^{n}}{n!} x^{n}
$$

Thus $\sum_{n=0}^{\infty} c_{n} x^{n}=\sum_{n=0}^{\infty} \frac{2^{n}}{n!} x^{n}$, i.e. $c_{n}=\frac{2^{n}}{n!}$ for all $n \geq 0$, is the series we're looking for.
4. Find a series $\sum_{n=0}^{\infty} d_{n} x^{n}$ such that $\left(\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\right)\left(\sum_{n=0}^{\infty} d_{n} x^{n}\right)=1$. [2]

Solution. We exploit the fact that we know that $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ for all x again:

$$
1=e^{0}=e^{x-x}=e^{x} e^{-x}=\left(\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\right)\left(\sum_{n=0}^{\infty} \frac{(-x)^{n}}{n!}\right)=\left(\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\right)\left(\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{n!}\right)
$$

Thus $\sum_{n=0}^{\infty} d_{n} x^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} x^{n}$, i.e. $d_{n}=\frac{(-1)^{n}}{n!}$ for all $n \geq 0$, is the series we're looking for.

