Mathematics 1120H - Calculus II: Integrals and Series
 Trent University, Winter 2020

Solutions to Assignment \#3
Exponential and Differential
Just in case you haven't seen it before, or have forgotten about it, the notation n ! is a shorthand for the product of the first n positive integers, that is:

$$
n!=n \cdot(n-1) \cdot(n-2) \cdots 3 \cdot 2 \cdot 1
$$

Thus $1!=1,2!=2 \cdot 1=2,3!=3 \cdot 2 \cdot 1=6,4!=4 \cdot 3 \cdot 2 \cdot 1=24$, and so on. $n!$ grows very quickly, faster than any exponential function with a constant base. (Stirling's Formula tells us that when n is large, n ! is approximately $\sqrt{2 n \pi} \cdot \frac{n^{n}}{e^{n}}$.)

This notation is extended to $n=0$ by defining $0!=1$. This is mainly done to make various general formulas and expressions involving n ! (including the sum in question $\mathbf{2}$ below) behave nicely when $n=0$. One could also justify this by observing that $n!$ counts the number of ways one can arrange n distinct objects in a row, and that there is only one way of arranging no objects at all...

1. Suppose $y=f(x)$ satisfies the equation $\frac{d y}{d x}=y$. Show that $f(x)=K e^{x}$ for some constant K. [5]

Solution. First, note that $y=f(x)=0$ for all x is a solution to the given differential equation because $\frac{d}{d x} 0=0$. Then $f(x)=K e^{x}=0 e^{x}=0$ for $K=0$.

Now suppose that $y=f(x)$ is differentiable and not equal to 0 for some value(s) of x. At least for such values, we can then rearrange the differential equation as follows,

$$
\frac{d y}{d x}=y \Longrightarrow \frac{1}{y} \cdot \frac{d y}{d x}=1
$$

and then compute the antiderivative of both sides. The right-hand side is easy: $\int 1 d x=$ $x+C$ by the Power Rule.

For the left-hand side, a quick and dirty approach would be to do the following:

$$
\int \frac{1}{y} \cdot \frac{d y}{d x} d x=\int \frac{1}{y} d y=\ln (y)+B
$$

(We use B because we've already used C for the generic constant of integration on the right-hand side.) This is one of those cases where one gets away with treating $\frac{d y}{d x}$ as if it were really a fraction.

A nominally more careful (and mathematically respectable :-) approach would be to treat this as an opportunity for a trivial subsitution $u=y$, so $d u=\frac{d y}{d x} d x$:

$$
\int \frac{1}{y} \cdot \frac{d y}{d x} d x=\int \frac{1}{u} d u=\ln (u)+B=\ln (y)+B
$$

Respectably or otherwise, we have arrived at $\ln (y)+B=x+C$. Solving this equation for y yields:

$$
\ln (y)+B=x+C \Longrightarrow \ln (y)=x+C-B \Longrightarrow y=e^{\ln (y)}=e^{x+C-B}=e^{C-B} e^{x}
$$

Setting $K=e^{C-B}$ means that $y=f(x)=K e^{x}$ has the desired form. Note that making $K=-e^{C-B}$ works too, since the negative sign will pass through the derivative and hence appear on both sides of the differential equation. (Alternatively, one could exploit the fact that $\ln (|y|)$ is a more general antiderivative of $\frac{1}{y}$ and eventually get $K= \pm e^{C-B}$.)

Thus, whether or not $y=f(x)$ is always 0 , if it is a solution of the differential equation $\frac{d y}{d x}=y$, we must have $y=f(x)=K e^{x}$ for some constant K.
2. Suppose $f(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\cdots$. Use 1 (and just a bit more) to show that $f(x)=e^{x}$. [5]
Note. For the sake of this assignment, you may assume that the sum $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ makes sense no matter what the value of x is. We'll see exactly what this means and how to check it is so later in the course. For now, just think of the sum as a polynomial of infinite degree.

Solution. One thing we can do with polynomials is differentiate them term-by-term. Following the hint and thinking of the series as a polynomial of infinite degree, we differentiate it term-by=term too:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\right)=\frac{d}{d x}\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\cdots\right) \\
& =\frac{d}{d x}\left(\frac{x^{0}}{0!}\right)+\sum_{n=1}^{\infty} \frac{d}{d x}\left(\frac{x^{n}}{n!}\right) \\
& =\frac{d}{d x} 1+\frac{d}{d x} x+\frac{d}{d x}\left(\frac{x^{2}}{2}\right)+\frac{d}{d x}\left(\frac{x^{3}}{6}\right)+\frac{d}{d x}\left(\frac{x^{4}}{24}\right)+\cdots \\
& =0+\sum_{n=1}^{\infty} \frac{n x^{n-1}}{n!}=0+1+\frac{2 x}{2}+\frac{3 x^{2}}{6}+\frac{4 x^{3}}{24}+\cdots \\
& =\sum_{n=1}^{\infty} \frac{x^{n-1}}{(n-1)!}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\cdots=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}=f(x)
\end{aligned}
$$

Thus $y=f(x)$ is equal to its derivative, i.e. $\frac{d y}{d x}=y$, so $\mathbf{1}$ tells us that $f(x)=K e^{x}$ for some constant K. Since $f(0)=\sum_{n=0}^{\infty} \frac{0^{n}}{n!}=1+0+\frac{0^{2}}{2}+\frac{0^{3}}{6}+\cdots=1+0=1$ (however many 0s you add, you're not going to get much :-), it follows that $K=K \cdot 1=K e^{0}=f(0)=1$. Thus $f(x)=e^{x}$, i.e. $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\cdots$, as desired.

