Mathematics 1120 H - Calculus II: Integrals and Series

Trent University, Summer 2020

Solutions to Quiz \#6

We know from lecture that the Taylor series at 0 (otherwise known as the MacLaurin series) of $\cos (x)$ is

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}
$$

1. As was done in the lecture for $\cos (x)$, use Taylor's formula to find the Taylor series at 0 of $\sin (x)$ and determine its interval of convergence. [2.5]

Solution. We grind out the derivatives at 0 of $f(x)=\sin (x)$ and look for a pattern to plug into Taylor's formula:

n	$f^{(n)}(x)$	$f^{(n)}(0)$
0	$\sin (x)$	0
1	$\cos (x)$	1
2	$-\sin (x)$	0
3	$-\cos (x)$	-1
4	$\sin (x)$	0
5	$\cos (x)$	1
6	$-\sin (x)$	0
7	$-\cos (x)$	-1
8	$\sin (x)$	0
\vdots	\vdots	\vdots

At all even n, we have $f^{(n)}(0)=0$; at odd values of n, say $n=2 k+1$ where $k \geq 0$, we have $f^{(n)}(0)=1$ if $k=0,2,4, \ldots$ and $f^{(n)}(0)=-1$ if $k=1,3,5, \ldots$, i.e. $f^{(2 k+1)}(0)=(-1)^{k}$. It follows that the Taylor series at 0 of $f(x)=\sin (x)$ is:

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n} & =\sum_{k=0}^{\infty} \frac{f^{(2 k+1)}(0)}{(2 k+1)!} x^{2 k+1}=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1} \\
& =\frac{x}{1!}-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots \\
& =x-\frac{x^{3}}{6}+\frac{x^{5}}{120}-\frac{x^{7}}{5040}+\cdots
\end{aligned}
$$

It remains to determine the the interval of convergence of this series. As usual we appeal to the Ratio Test first:

$$
\begin{aligned}
\lim _{k \rightarrow \infty}\left|\frac{\frac{(-1)^{k+1}}{(2(k+1)+1)!} x^{2(k+1)+1}}{\frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1}}\right| & =\lim _{k \rightarrow \infty}\left|\frac{\frac{(-1)^{k+1}}{(2 k+3)!} x^{2 k+3}}{\frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1}}\right|=\lim _{k \rightarrow \infty}\left|\frac{(-1)^{k+1} x^{2 k+3}}{(2 k+3)!} \cdot \frac{(2 k+1)!}{(-1)^{k} x^{2 k+1}}\right| \\
& =\lim _{k \rightarrow \infty}\left|\frac{(-1) x^{2}}{(2 k+3)(2 k+2)}\right|=x^{2} \lim _{k \rightarrow \infty} \frac{1}{(2 k+3)(2 k+2)} \\
& =x^{2} \cdot 0=0
\end{aligned}
$$

Since, no matter what value x has, we get a limit of in the Ratio Test and $0<1$, the series converges for all x, i.e. the interval of convergence of this series is $(-\infty, \infty)$.
2. Find the Taylor series at 0 of $\sin (x)$ without (directly) using Taylor's formula. [1]

Solution. Since antiderivative of $\cos (x)$ is $\sin (x)$, it follows that the antiderivative of the Taylor series at 0 for $\cos (x)$ is (up to a constant) the Taylor series at 0 for $\sin (x)$:

$$
\begin{aligned}
\int\left(\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}\right) d x & =\sum_{n=0}^{\infty} \int\left(\frac{(-1)^{n}}{(2 n)!} x^{2 n}\right) d x=C+\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} \cdot \frac{x^{2 n+1}}{2 n+1} \\
& =C+\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}
\end{aligned}
$$

The constant of integration, C, can be solved for because the function $\sin (x)$ and its Taylor series at 0 must equal each other at $x=0$:

$$
0=\sin (0)=C+\sum_{n=0}^{\infty} \frac{(-1)^{n} 0^{2 n+1}}{(2 n+1)!}=C+0=C
$$

Thus the Taylor series at 0 of $\sin (x)$ is $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$.
3. Find the Taylor series at 0 of $f(x)=\sin (x)+x \cos (x)$. [1.5]

Solution. Recall that if we have a power series at a equal to a function, that power series is the Taylor series at a of the function. Since we know the Taylor series at 0 of $\sin (x)$ and $\cos (x)$, and these series are equal to the functions they came from when they converge (like most Taylor series), the Taylor series at 0 of $f(x)=\sin (x)+x \cos (x)$ is given by:

$$
\begin{aligned}
f(x) & =\sin (x)+x \cos (x) \\
& =\left(\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}\right)+x\left(\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}\right) \\
& =\left(\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}\right)+\left(\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n)!}\right) \\
& =\sum_{n=0}^{\infty}\left(\frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}+\frac{(-1)^{n} x^{2 n+1}}{(2 n)!}\right) \\
& =\sum_{n=0}^{\infty}\left(\frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}+\frac{(-1)^{n} x^{2 n+1}(2 n+1)}{(2 n)!(2 n+1)}\right) \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}(2 n+2) x^{2 n+1}}{(2 n+1)!}
\end{aligned}
$$

