Mathematics 1120H - Calculus II: Integrals and Series

Trent University, Summer 2020

Solutions to Quiz \#4

Tuesday, 14 July.
Consider the region between $y=\sqrt{1-\frac{x^{2}}{4}}$ and $y=-\sqrt{1-\frac{x^{2}}{4}}$, where $0 \leq x \leq 2$. (This is the right half of the region enclosed by the ellipse $\frac{x^{2}}{4}+y^{2}=1$.) Revolve this region about the y-axis. The resulting solid of revolution is an "oblate spheroid" and looks like something like a squashed sphere.

1. Compute the volume of this oblate spheroid. [5]

Solution. (Cylindrical Shells) If we use the method of cylindrical shells to compute the volume of this solid of revolution, the shells will be open cylinders with axis of symmetry the y-axis. The shells will therefore run parallel to the y-axis and perpendicular to the x-axis, so we will use x as our variable. Consider the shell that passes through x :

This shell has radius $r=x-0=x$ and height $h=$ upper - lower $=\sqrt{1-\frac{x^{2}}{4}}-$ $\left(-\sqrt{1-\frac{x^{2}}{4}}\right)=2 \sqrt{1-\frac{x^{2}}{4}}$. From the original region, the range of x is $0 \leq x \leq 2$. It follows that the volume of the solid is given by:

$$
\begin{aligned}
V & =\int_{0}^{2} 2 \pi r h d x=\int_{0}^{2} 2 \pi x \cdot 2 \sqrt{1-\frac{x^{2}}{4}} d x \quad \begin{array}{l}
\text { Substitute } u=1-\frac{x^{2}}{4}, \text { so } d u=-\frac{x}{2} d x \\
\text { and } x d x=(-2) d u, \text { with } \begin{array}{lll}
x & 0 & 2 \\
u & 1 & 0
\end{array} \\
\end{array} \\
& =\int_{1}^{0} 4 \pi \sqrt{u}(-2) d u=8 \pi \int_{0}^{1} u^{1 / 2} d u=\left.8 \pi \cdot \frac{u^{3 / 2}}{3 / 2}\right|_{0} ^{1}=\left.\frac{16}{3} \pi u^{3 / 2}\right|_{0} ^{1} \\
& =\frac{16}{3} \pi \cdot 1^{3 / 2}-\frac{16}{3} \pi \cdot 0^{3 / 2}=\frac{16}{3} \pi \quad \square
\end{aligned}
$$

(Disks/Washers) If we use the disk/washer method to compute the volume of this solid of revolution, the disks will be centered at and stacked along the y-axis. The disks will
therefore be parallel to the x-axis and perpendicular to the x-axis, so we will use y as our basic variable. Note that in the original region, y runs from $-\sqrt{1-\frac{0^{2}}{4}}=-1$ to $\sqrt{1-\frac{0^{2}}{4}}=1$. Consider the disk at y :

The radius of the disk at y is $r=x-0=x$ for the x obtained by solving $\frac{x^{2}}{4}+y^{2}=1$ for x in terms of $y: x^{2}=4-4 y^{2}$, so $r=x=\sqrt{4-4 y^{2}}=2 \sqrt{1-y^{2}}$. (We ignore the negative root, since $x \geq 0$ in the original region. Besides, a radius ought to be positive...) It follows that the volume of the solid is given by:

$$
\begin{aligned}
V & =\int_{-1}^{1} \pi r^{2} d y=\int_{-1}^{1} \pi\left(2 \sqrt{1-y^{2}}\right)^{2} d y=\int_{-1}^{1} 4 \pi\left(1-y^{2}\right) d y=\left.4 \pi\left(y-\frac{y^{3}}{3}\right)\right|_{-1} ^{1} \\
& =4 \pi\left(1-\frac{1^{3}}{3}\right)-4 \pi\left((-1)-\frac{(-1)^{3}}{3}\right)=4 \pi \cdot \frac{2}{3}-4 \pi \cdot\left(-\frac{2}{3}\right)=\frac{8}{3} \pi+\frac{8}{3} \pi=\frac{16}{3} \pi
\end{aligned}
$$

2. Compute the surface area of this oblate spheroid. [5]

Solution. Whether we use x or y as the fundamental (or "independent") variable, the surface area formula is $S A=\int_{a}^{b} 2 \pi r d s$, where $d s$ is an infinitesimal increment of arclength. Depending on whether we choose x or y as the fundamental variable, we have $d s=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x$ or $d s=\sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y$. Just for fun, and because we just worked out things in terms of y in the second solution to $\mathbf{1}$ above, we will use y as the fundamental variable. In terms of y, as we noted above, $x=2 \sqrt{1-y^{2}}$ for $-1 \leq y \leq 1$ and x in the given region. This means that the little bit of arc at y, the $d s$, gets revolved around a circle of radius $r=x-0=x=2 \sqrt{1-y^{2}}$, and that

$$
\begin{aligned}
\frac{d x}{d y} & =\frac{d}{d y} 2 \sqrt{1-y^{2}}=\frac{d}{d y} 2\left(1-y^{2}\right)^{1 / 2}=2 \cdot \frac{1}{2}\left(1-y^{2}\right)^{-1 / 2} \cdot \frac{d}{d y}\left(1-y^{2}\right) \\
& =\left(1-y^{2}\right)^{-1 / 2} \cdot(-2 y)=-2 y\left(1-y^{2}\right)^{-1 / 2} \cdot=\frac{-2 y}{\sqrt{1-y^{2}}}
\end{aligned}
$$

We plug all of this into the surface area formula previously mentioned:

$$
\begin{aligned}
& S A=\int_{-1}^{1} 2 \pi r d s=\int_{-1}^{1} 2 \pi \cdot x \cdot \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y \\
& =2 \pi \int_{-1}^{1} 2 \sqrt{1-y^{2}} \cdot \sqrt{1+\left(\frac{-2 y}{\sqrt{1-y^{2}}}\right)^{2}} d y \\
& =4 \pi \int_{-1}^{1} \sqrt{1-y^{2}} \cdot \sqrt{1+\frac{4 y^{2}}{1-y^{2}}} d y=4 \pi \int_{-1}^{1} \sqrt{1-y^{2}} \cdot \sqrt{\frac{1-y^{2}}{1-y^{2}}+\frac{4 y^{2}}{1-y^{2}}} d y \\
& =4 \pi \int_{-1}^{1} \sqrt{1-y^{2}} \cdot \sqrt{\frac{1+3 y^{2}}{1-y^{2}}} d y=4 \pi \int_{-1}^{1} \sqrt{1-y^{2}} \cdot \frac{\sqrt{1+3 y^{2}}}{\sqrt{1-y^{2}}} d y \\
& =4 \pi \int_{-1}^{1} \sqrt{1+3 y^{2}} d y \quad \text { Substitute } y=\frac{1}{\sqrt{3}} \tan (t) \text {, } \\
& \text { so } d y=\frac{1}{\sqrt{3}} \sec ^{2}(t) d t \text {. } \\
& =4 \pi \int_{y=-1}^{y=1} \sqrt{1+3\left(\frac{1}{\sqrt{3}} \tan (t)\right)^{2}} \frac{1}{\sqrt{3}} \sec ^{2}(t) d t \\
& =\frac{4 \pi}{\sqrt{3}} \int_{y=-1}^{y=1} \sqrt{1+\frac{3}{3} \tan ^{2}(t)} \sec ^{2}(t) d t \\
& =\frac{4 \pi}{\sqrt{3}} \int_{y=-1}^{y=1} \sqrt{1+\tan ^{2}(t)} \sec ^{2}(t) d t=\frac{4 \pi}{\sqrt{3}} \int_{y=-1}^{y=1} \sqrt{\sec ^{2}(t)} \sec ^{2}(t) d t \\
& =\frac{4 \pi}{\sqrt{3}} \int_{y=-1}^{y=1} \sec ^{3}(t) d t=\frac{4 \pi}{\sqrt{3}}\left[\frac{1}{2} \tan (t) \sec (t)+\frac{1}{2} \int \sec (t) d t\right]_{y=-1}^{y=1} \\
& =\frac{2 \pi}{\sqrt{3}}[\tan (t) \sec (t)+\ln (\tan (t)+\sec (t))]_{y=-1}^{y=1} \\
& =\frac{2 \pi}{\sqrt{3}}\left[\sqrt{3} y \sqrt{1+3 y^{2}}+\ln \left(\sqrt{3} y+\sqrt{1+3 y^{2}}\right)\right]_{-1}^{1} \\
& =\frac{2 \pi}{\sqrt{3}}\left[\sqrt{3} \cdot 1 \cdot \sqrt{1+3 \cdot 1^{2}}+\ln \left(\sqrt{3} \cdot 1+\sqrt{1+3 \cdot 1^{2}}\right)\right] \\
& -\frac{2 \pi}{\sqrt{3}}\left[\sqrt{3}(-1) \sqrt{1+3(-1)^{2}}+\ln \left(\sqrt{3}(-1) y+\sqrt{1+3(-1)^{2}}\right)\right] \\
& =\frac{2 \pi}{\sqrt{3}}[2 \sqrt{3}+\ln (2+\sqrt{3})]-\frac{2 \pi}{\sqrt{3}}[-2 \sqrt{3}+\ln (2-\sqrt{3})] \\
& =\frac{2 \pi}{\sqrt{3}}\left[4 \sqrt{3}+\ln \left(\frac{2+\sqrt{3}}{2-\sqrt{3}}\right)\right]=8 \pi+\frac{2 \pi}{\sqrt{3}} \ln \left(\frac{2+\sqrt{3}}{2-\sqrt{3}}\right)
\end{aligned}
$$

Not the nicest-looking of numbers...

