# Mathematics 1120 H - Calculus II: Integrals and Series 

Trent University, Summer 2020

## Solutions to Quiz \#2

1. Compute $\int[\ln (x)]^{2} d x$. Show all your work. [2.5]

Solution. This is best done with integration by parts:

$$
\begin{aligned}
\int[\ln (x)]^{2} d x & =[\ln (x)]^{2} \cdot x-\int 2 \ln (x) \cdot \frac{1}{x} \cdot x d x \quad \begin{array}{ll}
u=[\ln (x)]^{2} & v^{\prime}=1 \\
u^{\prime}=2 \ln (x) \cdot \frac{1}{x}
\end{array} \quad v=x \\
& =x[\ln (x)]^{2}-2 \int \ln (x) d x \quad \begin{array}{c}
s=\ln (x) \\
t^{\prime}=1
\end{array} \\
& =x[\ln (x)]^{2}-2\left(\ln (x) \cdot x-\int \frac{1}{x} \quad t=x\right. \\
& =x d x) \\
& =x[\ln (x)]^{2}-2\left(x \ln (x)-\int 1 d x\right) \\
& =x[\ln (x)]^{2}-2(x \ln (x)-x)+C \\
& =x[\ln (x)]^{2}-2 x \ln (x)+2 x+C \quad \square
\end{aligned}
$$

2. Suppose $f(x)$ is a function that is defined and integrable on the interval $[a, b]$. Verify that $\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$. Show all your work. [2.5]
Solution. We'll start from the right-hand side and work toward the left-hand side using substitution:

$$
\begin{aligned}
\int_{a}^{b} f(a+b-x) d x & =\int_{b}^{a} f(w)(-1) d w \quad \begin{array}{l}
w=b-x, \text { so } d w=(-1) d x, \text { and } \\
\text { hence } d x=(-1) d w \text { and } \begin{array}{c}
x \\
w
\end{array} \quad b \\
\end{array} \\
& =-\int_{b}^{a} f(u) d u=\int_{a}^{b} f(u) d u=\int_{a}^{b} f(x) d x
\end{aligned}
$$

... with the last equality holding because it doesn't matter what you call the internal variable in a definite integral.

