Mathematics 1120H - Calculus II: Integrals and Series
 Trent University, Summer 2020 (S62)

Take-Home Final Examination
Released at noon on Wednesday, 29 July, 2020.
Due by noon on Saturday, 1 August, 2020.

Instructions

- You may consult your notes, handouts, and textbook from this course and any other math courses you have taken or are taking now. You may also use a calculator. However, you may not consult any other source, or give or receive any other aid, except for asking the instructor to clarify instructions or questions.
- Please submit an electronic copy of your solutions, preferably as a single pdf (a scan of handwritten solutions should be fine), via the Assignment module on Blackboard. If that doesn't work, please email your solutions to the intructor. Show all your work!
- Do all three (3) of Parts I - III, and, if you wish, Part IV as well.

Part I. Do both of $\mathbf{1}$ and 2. [$40=2 \times 20$ each]

1. Compute the integrals in any four (4) of $\mathbf{a}-\mathbf{f}$. $[20=4 \times 5$ each]
a. $\int_{0}^{\pi / 2} \sin (x) \sqrt{1+\cos ^{2}(x)} d x$
b. $\int \frac{\ln (\ln (x))}{x} d x$
c. $\int \frac{x}{\sqrt{4-x^{2}}} d x$
d. $\int_{-1}^{1} \frac{1+\arctan ^{2}(x)}{1+x^{2}} d x$
e. $\int_{0}^{1} x \arctan (x) d x$
f. $\int \frac{1}{\sqrt{4+x^{2}}} d x$
2. Determine whether the series converges in any four (4) of $\mathbf{a}-\mathbf{f}$. [$20=4 \times 5 \mathrm{each}$]
a. $\sum_{n=0}^{\infty} \frac{2^{n}-3^{n}}{4^{n}+(-1)^{n}}$
b. $\sum_{n=0}^{\infty}(-3)^{-n} e^{n}$
c. $\sum_{n=1}^{\infty} \frac{\ln (n)}{n}$
d. $\sum_{n=0}^{\infty} \frac{\sin (n)+\cos (n)}{n^{3}+n^{2}+n+1}$
e. $\sum_{n=1}^{\infty} \frac{n^{n}}{n!}$
f. $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\sqrt{n+1}}$

Part II. Do any three (3) of $\mathbf{3}-\mathbf{6}$. [$30=3 \times 10$ each]
3. Find the volume of the solid obtained by revolving the region below $y=4-x^{2}$ and above $y=0$, for $-2 \leq x \leq 2$, about the x-axis. [10]
4. a. Find the arc-length of the curve $y=\ln (\cos (x))$, where $0 \leq x \leq \frac{\pi}{4}$. [6]
b. Find the average value of $\tan (x)$ on the interval $\left[0, \frac{\pi}{4}\right]$. [4]
5. Find the area of the surface obtained by revolving the curve $y=\sin (x)$, for $0 \leq x \leq \pi$, about the x-axis. [10]
6. Work out $\int \frac{x^{3}-x^{2}+x+59}{x^{3}-x^{2}+x-1} d x$. [10]

Part III. Do any three (3) of $\mathbf{7} \mathbf{- 1 0}$. [30 $=3 \times 10$ each]
7. Determine the radius and interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{x^{2 n}}{2 n}$. What function has this power series as its Taylor series at 0? [10]
8. Consider the rational function $q(x)=\frac{x^{7}-1}{x-1}$. Find the Taylor series at 0 of $q(x)$ and determine its radius and interval of convergence. [10]
9. Find the Taylor series at 0 of $f(x)=\frac{1}{3+x}$ and determine its radius and interval of convergence. [10]
10. In each case, give an example (or explain why there isn't one) of a series $\sum_{n=2}^{\infty} a_{n}$
a. ... that diverges, but $\sum_{n=2}^{\infty}(-1)^{n} a_{n}$ converges. [1]
b. ... that converges, but $\sum_{n=2}^{\infty}(-1)^{n} a_{n}$ diverges. [1]
c. ... that diverges, but $\sum_{n=2}^{\infty} a_{n}^{2}$ converges. [2]
d. ... that converges, but $\sum_{n=2}^{\infty} a_{n}^{2}$ diverges. [2]
e. ... that converges conditionally, but $\sum_{n=2}^{\infty}(-1)^{n} a_{n}$ converges absolutely. [2]
f. ... that converges absolutely, but $\sum_{n=2}^{\infty}(-1)^{n} a_{n}$ converges conditionally. [2]

$$
[\text { Total }=100]
$$

Part IV. Bonus! If you want to, do one or both of the following problems.
41. Write a poem touching on calculus or mathematics in general. [1]
42. When does $6 \times 9=42$ actually work? (With apologies to Douglas Adams. :-) [1]

Thank you all for bearing with the course under difficult circumstances. Enjoy the rest of the summer!

