Mathematics 1120H - Calculus II: Integrals and Series
 Trent University, Winter 2020
 Assignment \#5
 A Little Series Calculus
 Due on Friday, 24 July.

Please submit your solutions using Blackboard's assignment module. If that fails, please email your solutions to the instructor (sbilaniuk@trentu.ca). Scans or photos of handwritten solutions are perfectly acceptable, so long as they are legible and in some common format. (Combined into a single pdf, for preference.)

1. Find a nice formula for the sum of the series

$$
\sum_{n=0}^{\infty}(-1)^{n} x^{n}=1-x+x^{2}-x^{3}+x^{4}-x^{5}+\cdots
$$

and determine for which values of x this series converges. [1]
2. Find a nice formula for the sum of the series

$$
\sum_{n=0}^{\infty}(-1)^{n} n x^{n-1}=0-1+2 x-3 x^{2}+4 x^{3}-5 x^{4}+\cdots
$$

and determine for which values of x the series converges. [2]
3. Find a nice formula for the sum of the series

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n+1}}{n+1}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\frac{x^{5}}{5}-\frac{x^{6}}{6}+\cdots
$$

and determine for which values of x this series converges. [3]
4. Find the sum of the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$. How many terms of this series do you need to add up to guarantee that the partial sum in question is within $0.0001=10^{-4}=\frac{1}{10000}$ of the sum of the entire series? [4]

