Mathematics 1120H - Calculus II: Integrals and Series
 Trent University, Winter 2020
 Assignment \#4
 A Little Series Algebra
 Due on Friday, 17 July.

Please submit your solutions using Blackboard's assignment module. If that fails, please email your solutions to the instructor (sbilaniuk@trentu.ca). Scans or photos of handwritten solutions are perfectly acceptable, so long as they are legible and in some common format. (Combined into a single pdf, for preference.)

The series $\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+x^{4}+\cdots$ is a geometric series with first term $a=1$ and common ratio $r=x$, and so adds up to $\frac{a}{1-r}=\frac{1}{1-x}$ when $|r|=|x|<1$. For questions $\mathbf{1}$ and $\mathbf{2}$ you may assume that $|x|<1$, so that the series adds up nicely.

1. Find a series $\sum_{n=0}^{\infty} a_{n} x^{n}$ such that $\sum_{n=0}^{\infty} a_{n} x^{n}=\left(\sum_{n=0}^{\infty} x^{n}\right)^{2}$. [4]
2. Find a series $\sum_{n=0}^{\infty} b_{n} x^{n}$ such that $\left(\sum_{n=0}^{\infty} x^{n}\right)\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)=1$. [1]

Recall from Assignment \#3 that $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\cdots$. This series actually converges for all x, as we shall see later.
3. Find a series $\sum_{n=0}^{\infty} c_{n} x^{n}$ such that $\sum_{n=0}^{\infty} c_{n} x^{n}=\left(\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\right)^{2}$. [3]
4. Find a series $\sum_{n=0}^{\infty} d_{n} x^{n}$ such that $\left(\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\right)\left(\sum_{n=0}^{\infty} d_{n} x^{n}\right)=1$. [2]

