Mathematics 1120H - Calculus II: Integrals and Series
 Trent University, Winter 2020
 Assignment \#3
 Exponential and Differential
 Due on Friday, 10 July.

Please submit your solutions using Blackboard's assignment module. If that fails, please email your solutions to the instructor (sbilaniuk@trentu.ca). Scans or photos of handwritten solutions are perfectly acceptable, so long as they are legible and in some common format. (Combined into a single pdf, for preference.)

Just in case you haven't seen it before, or have forgotten about it, the notation n ! is a shorthand for the product of the first n positive integers, that is:

$$
n!=n \cdot(n-1) \cdot(n-2) \cdots 3 \cdot 2 \cdot 1
$$

Thus $1!=1,2!=2 \cdot 1=2,3!=3 \cdot 2 \cdot 1=6,4!=4 \cdot 3 \cdot 2 \cdot 1=24$, and so on. $n!$ grows very quickly, faster than any exponential function with a constant base. (Stirling's Formula tells us that when n is large, n ! is approximately $\sqrt{2 n \pi} \cdot \frac{n^{n}}{e^{n}}$.)

This notation is extended to $n=0$ by defining $0!=1$. This is mainly done to make various general formulas and expressions involving n ! (including the sum in question 2 below) behave nicely when $n=0$. One could also justify this by observing that $n!$ counts the number of ways one can arrange n distinct objects in a row, and that there is only one way of arranging no objects at all...

1. Suppose $y=f(x)$ satisfies the equation $\frac{d y}{d x}=y$. Show that $f(x)=K e^{x}$ for some constant K. [5]
2. Suppose $f(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\cdots$. Use $\mathbf{1}$ (and just a bit more) to show that $f(x)=e^{x}$. [5]
Note. For the sake of this assignment, you may assume that the sum $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ makes sense no matter what the value of x is. We'll see exactly what this means and how to check it is so later in the course. For now, just think of the sum as a polynomial of infinite degree.
