Trent University, Summer 2018

MATH 1110H Test

Monday, 28 May
Time: 50 minutes

Name: Solutions

Student Number: $\quad 3141592$

Question Mark

Instructions

- Show all your work. Legibly, please! Simplify where you reasonably can.
- If you have a question, ask it!
- Use the back sides of all the pages for rough work or extra space.
- You may use a calculator and (all sides of) an aid sheet.

1. Compute $\frac{d y}{d x}$ for any four (4) of parts a-f. [12 $=4 \times 3$ each]
a. $y=x e^{x}$
b. $x^{2}-y=1+x$
c. $y=\ln (\cos (x))$
d. $y=\tan \left(x^{2}\right)$
e. $y=\cos (x)+e^{x^{2}}$
f. $y=\frac{x-1}{x^{2}+1}$

Solutions. a. Product Rule:

$$
\frac{d y}{d x}=\frac{d}{d x}\left(x e^{x}\right)=\left(\frac{d}{d x} x\right) \cdot e^{x}+x \cdot\left(\frac{d}{d x} e^{x}\right)=1 \cdot e^{x}+x \cdot e^{x}=(1+x) e^{x}
$$

b. If $x^{2}-y=1+x$, then $y=x^{2}-x-1$, so $\frac{d y}{d x}=\frac{d}{d x}\left(x^{2}-x-1\right)=2 x+1+0=2 x+1$, mostlu using the Power Rule.
c. Chain Rule; let $u=\cos (x)$, and then:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x} \ln (\cos (x))=\frac{d}{d x} \ln (u)=\left(\frac{d}{d u} \ln (u)\right) \cdot \frac{d u}{d x}=\frac{1}{u} \cdot \frac{d}{d x} \cos (x) \\
& =\frac{1}{\cos (x)} \cdot(-\sin (x))=-\frac{\sin (x)}{\cos (x)}=-\tan (x) \quad \square
\end{aligned}
$$

d. Chain Rule again, with a bit of Power Rule; let $w=x^{2}$, and then:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x} \tan \left(x^{2}\right)=\frac{d}{d x} \tan (w)=\left(\frac{d}{d w} \tan (w)\right) \cdot \frac{d w}{d x}=\sec ^{2}(w) \cdot \frac{d}{d x} x^{2} \\
& =\sec ^{2}\left(x^{2}\right) \cdot 2 x=2 x \sec ^{2}\left(x^{2}\right)
\end{aligned}
$$

e. Chain Rule with a bit of Power Rule again for the harder part; let $w=x^{2}$, and then:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left(\cos (x)+e^{x^{2}}\right)=\frac{d}{d x} \cos (x)+\frac{d}{d x} e^{x^{2}}=-\sin (x)+\frac{d}{d x} e^{w} \\
& =-\sin (x)+\left(\frac{d}{d w} e^{w}\right) \cdot \frac{d w}{d x}=-\sin (x)+e^{w} \cdot \frac{d}{d x} x^{2}=-\sin (x)+e^{x^{2}} \cdot 2 x \\
& =-\sin (x)+2 x e^{x^{2}} \square
\end{aligned}
$$

f. Quotient Rule and a bit of Power Rule:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left(\frac{x-1}{x^{2}+1}\right)=\frac{\left[\frac{d}{d x}(x-1)\right] \cdot\left(x^{2}+1\right)-(x-1) \cdot\left[\frac{d}{d x}\left(x^{2}+1\right)\right]}{\left(x^{2}+1\right)^{2}} \\
& =\frac{[1] \cdot\left(x^{2}+1\right)-(x-1) \cdot[2 x+0]}{\left(x^{2}+1\right)^{2}}=\frac{x^{2}+1-2 x^{2}-(-2 x)}{\left(x^{2}+1\right)^{2}} \\
& =\frac{-x^{2}+2 x+1}{\left(x^{2}+1\right)^{2}}
\end{aligned}
$$

2. Do any two (2) of parts a-d. $[8=2 \times 4$ each]
a. Compute $\lim _{t \rightarrow 0} \frac{\tan (t)}{\sin (t)}$.
b. Find the coordinates of the tip of the parabola $y=x^{2}-2 x-3$.
c. Find the equation of the tangent line to $y=x^{2}+1$ at the point $(1,2)$.
d. Use the $\varepsilon-\delta$ definition of limits to verify that $\lim _{x \rightarrow 1}(4 x-3)=1$.

Solutions. a. Here goes:

$$
\begin{aligned}
\lim _{t \rightarrow 0} \frac{\tan (t)}{\sin (t)} & =\lim _{t \rightarrow 0}\left[\tan (t) \cdot \frac{1}{\sin (t)}\right]=\lim _{t \rightarrow 0}\left[\frac{\sin (t)}{\cos (t)} \cdot \frac{1}{\sin (t)}\right] \\
& =\lim _{t \rightarrow 0} \frac{1}{\cos (t)}=\frac{1}{\cos (0)}=\frac{1}{1}=1 \quad \square
\end{aligned}
$$

b. (Completing the square.) Observe that:

$$
\begin{aligned}
y=x^{2}-2 x-3 & =x^{2}-2 x+\left(\frac{-2}{2}\right)^{2}-\left(\frac{-2}{2}\right)^{2}-3 \\
& =\left[x^{2}-2 x+(-1)^{2}\right]+\left[-(-1)^{2}-3\right]=(x-1)^{2}-4
\end{aligned}
$$

It follows that the tip of the parabola has x-coordinate 1 , when $(x-1)^{2}$ is as small as possible, and y-coordinate $(1-1)^{2}-4=0-4=-4$, so the tip is located at $(1,4)$.
b. (Between the roots.) The tip of a parabola has x-coordinate halfway between its intercepts, i.e. halfway between the roots of the quadratic expression giving the parabola. [Strangely enough, this works even if the roots are complex and so there are no real intercepts!] We can find these roots by either factoring the quadratic, $y=x^{2}-2 x-3=$ $(x+1)(x-3)$, which gives 0 when $x=-1$ or $x=3$, or by applying the quadratic formula: $x^{2}-2 x-3=0$ exactly when

$$
x=\frac{-(-2) \pm \sqrt{(-2)^{2}-4 \cdot 1 \cdot(-3)}}{2 \cdot 1}=\frac{2 \pm \sqrt{4+12}}{2}=\frac{2 \pm \sqrt{16}}{2}=\frac{2 \pm 4}{2}=1 \pm 2
$$

that is, when $x=1-2=-1$ or when $x=1+2=3$. Either way, the x-coordinate of the tip must be halway between at $x=\frac{(-1)+3}{2}=\frac{2}{2}=1$, and the y-coordinate must then be at $y=1^{2}-2 \cdot 1-3=1-2-3=-4$, so the tip is at the point $(1,-4)$.
b. (Calculus!) The tip of a parabola is a maximum or minumum, so the derivative will be 0 at that point. $\frac{d y}{d x}=\frac{d}{d x}\left(x^{2}-2 x-3\right)=2 x-2-0=2(x-1)=0$ exactly when $x=1$, so this must be the x-coordinate of the tip. The y-coordinate must then be at $y=1^{2}-2 \cdot 1-3=1-2-3=-4$, so the tip is at the point $(1,-4)$.
c. As a sanity check, $1^{2}+1=2$, so the point $(1,2)$ is indeed on $y=x^{2}+1$. The tangent line to the parabola $y=x^{2}+1$ at x has slope $\frac{d y}{d x}=\frac{d}{d x}\left(x^{2}+1\right)=2 x$; so at the point $(1,2)$, the slope of the tangent line is $m=2 \cdot 1=2$. It follows that the tangent line has the equation $y=2 x+b$ for some constant b; since it passes through the point (1,2), $2=2 \cdot 1+b$, so $b=2-2=0$. Thus the equation of the tangent line to $y=x^{2}+1$ at the point $(1,2)$ is $y=2 x$.
d. According to the $\varepsilon-\delta$ definition of limits $\lim _{x \rightarrow 1}(4 x-3)=1$ means that for every $\varepsilon>0$ there is a $\delta>0$ such that for all x with $|x-1|<\delta$ we have $|(4 x-3)-1|<\varepsilon$. To verify this is so, we need to figure out how to find a suitable δ if we are given an $\varepsilon>0$. We will do so here by reverse-engineering the δ from the desired conclusion:

$$
|(4 x-3)-1|<\varepsilon \Longleftrightarrow|4 x-4|<\varepsilon \Longleftrightarrow 4|x-1|<\varepsilon \Longleftrightarrow|x-1|<\frac{\varepsilon}{4}
$$

Suppose, then that a $\varepsilon>0$ is given. If we let $\delta=\frac{\varepsilon}{4}$, then any x with $|x-1|<\delta=\frac{\varepsilon}{4}$ will, by tracing the equivalences above from right to left, have $|(4 x-3)-1|<\varepsilon$. It follows that $\lim _{x \rightarrow 1}(4 x-3)=1$ by the $\varepsilon-\delta$ definition of limits.
3. Find the domain and any and all intercepts, intervals of increase and decrease, maximum and minimum points, intervals of concavity, and inflection points of the function $g(x)=\frac{x+1}{x^{2}}=\frac{1}{x}+\frac{1}{x^{2}} .[10]$
Solution. i. Domain. $g(x)=\frac{x+1}{x^{2}}=\frac{1}{x}+\frac{1}{x^{2}}$ makes sense for all real numbers x except for $x=0$, so the domain of $g(x)$ is $\{x \in \mathbb{R} \mid x \neq 0\}=(-\infty, 0) \cup(0, \infty)$.
ii. Intercepts. $g(0)$ is undefined, so there is no y-intercept. $g(x)=\frac{x-1}{x^{2}}=0$ only when $x-1=0$, $i . e$. when $x=1$, so $x=1$ is the only x-intercept of $g(x)$.
iii. Increase/decrease. First, with a little help from the Quotient and Power Rules:

$$
\begin{aligned}
g^{\prime}(x) & =\frac{d}{d x}\left(\frac{x+1}{x^{2}}\right)=\frac{\left[\frac{d}{d x}(x+1)\right] \cdot x^{2}-(x+1) \cdot\left[\frac{d}{d x} x^{2}\right]}{\left(x^{2}\right)^{2}}=\frac{1 \cdot x^{2}-(x+1) \cdot 2 x}{x^{4}} \\
& =\frac{x^{2}-2 x^{2}-2 x}{x^{4}}=\frac{-x^{2}-2 x}{x^{4}}=\frac{-(x+2)}{x^{3}}
\end{aligned}
$$

$g^{\prime}(x)=\frac{-(x+2)}{x^{3}}$ is undefined when $x=0$, and $g^{\prime}(x)=0$ exactly when $x=-2$. When $x<-2, x+2<0$ and hence $-(x+2)>0$, while $x^{3}<0$, so $g^{\prime}(x)<0$; when $-2<x<0$, $x+2>0$ and hence $-(x+2)<0$, while $x^{3}<0$, so $g^{\prime}(x)>0$; and when $x>0, x+2>0$ and hence $-(x+2)<0$, while $x^{3}>0$, so $g^{\prime}(x)<0$. We summarize this information and the implications for $g(x)$ in the usual table:

$$
\begin{array}{cccccc}
x & (-\infty,-2) & -2 & (-2,0) & 0 & (0, \infty) \\
g^{\prime}(x) & - & 0 & + & \text { undefined } & - \\
g(x) & \downarrow & \text { minimum } & \uparrow & \text { undefined } & \downarrow
\end{array}
$$

$g(x)$ is therefore decreasing on $(-\infty,-2)$ and $(0, \infty)$ and increasing on $(-2,0)$.
iv. Maximum and minimum points. From the table, $g(x)$ has a minimum at $x=-2$; as $g(-2)=\frac{-2+1}{(-2)^{2}}=-\frac{1}{4},\left(-2,-\frac{1}{4}\right)$ is the minimum point. Note that $g(x)$ is undefined at $x=0$, which is the only candidate for a maximum point since it separates an interval of increase from an interval of decrease.
v. Concavity. First, with some more help from the Quotient and Power Rules:

$$
\begin{aligned}
g^{\prime \prime}(x) & =\frac{d}{d x} g^{\prime}(x)=\frac{d}{d x}\left(\frac{-(x+2)}{x^{3}}\right)=\frac{\left[\frac{d}{d x}(-(x+2))\right] \cdot x^{3}-(-(x+2)) \cdot\left[\frac{d}{d x} x^{3}\right]}{\left(x^{3}\right)} \\
& =\frac{[-1] \cdot x^{3}+(x+2) \cdot\left[3 x^{2}\right]}{x^{6}}=\frac{-x^{3}+3 x^{3}+6 x^{2}}{x^{6}}=\frac{2 x^{3}+6 x^{2}}{x^{6}}=\frac{2 x+6}{x^{4}}
\end{aligned}
$$

$g^{\prime \prime}(x)=\frac{2 x+6}{x^{4}}=\frac{2(x+3)}{x^{4}}$ is undefined when $x=0$, and $g^{\prime \prime}(x)=0$ exactly when $x=-3$. When $x<-3,2(x+3)<0$, while $x^{4}>0$, so $g^{\prime \prime}(x)<0$; when $-3<x<0,2(x+3)>0$, while $x^{4}>0$, so $g^{\prime \prime}(x)>0$; and when $x>0,2(x+3)>0$, while $x^{4}>0$, so $g^{\prime \prime}(x)>0$. We summarize this information and the implications for $g(x)$ in the usual table:

$$
\begin{array}{cccccc}
x & (-\infty,-3) & -3 & (-3,0) & 0 & (0, \infty) \\
g^{\prime \prime}(x) & - & 0 & + & \text { undefined } & + \\
g(x) & \frown & \text { inflection } & \smile & \text { undefined } & \smile
\end{array}
$$

$g(x)$ is therefore concave down on $(-\infty,-3)$ and concave up on $(-3,0)$ and $(0, \infty)$.
vi. Inflection points. From the table, $g(x)$ is defined at $x=-3$ and changes concavity from down to up, so it is an inflection point. Since $g(-3)=\frac{-3+1}{(-3)^{2}}=-\frac{2}{9}$, the actual point in question has coordinates $\left(-3,-\frac{2}{9}\right)$. Note that $x=0$ is not an inflection point for two reasons: $g(0)$ is not defined and $g(x)$ is concave up on both sides of $x=0$, so it doesn't change concavity.
vii. Asymptotes. [Not asked for in the question, but it helps when drawing the graph.] First, we check for horizontal asymptotes. Note that as x heads off to ∞ or $-\infty, \frac{1}{x}$ and $\frac{1}{x^{2}}$ both get arbitrarily close to 0 .

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} g(x)=\lim _{x \rightarrow-\infty} \frac{x+1}{x^{2}}=\lim _{x \rightarrow-\infty}\left(\frac{1}{x}+\frac{1}{x^{2}}\right)=0+0=0 \\
& \lim _{x \rightarrow+\infty} g(x)=\lim _{x \rightarrow+\infty} \frac{x+1}{x^{2}}=\lim _{x \rightarrow+\infty}\left(\frac{1}{x}+\frac{1}{x^{2}}\right)=0+0=0
\end{aligned}
$$

Thus $g(x)$ has the line $y=0$, otherwise known as the x-axis, as a horizontal asymptote in both directions.

Second, we check for vertical asymptotes. Since $g(x)$ is defined and continuous everywhere except at $x=0$, this is the only place vertical asymptotes might occur. Note that as x approaches $0, x+1$ approaches 1 and x^{2} approaches 0 from the positive side.

$$
\lim _{x \rightarrow 0^{-}} g(x)=\lim _{x \rightarrow 0^{-}} \frac{x+1}{x^{2}}=+\infty \quad \lim _{x \rightarrow 0^{+}} g(x)=\lim _{x \rightarrow 0^{+}} \frac{x+1}{x^{2}}=+\infty
$$

Thus $g(x)$ has a vertical asymptote going up on both sides of $x=0$. viii. The graph. Cheating slightly, by getting a computer to draw it:

