Mathematics 1110 H - Calculus I: Limits, derivatives, and Integrals Trent University, Summer 2018

MATH 1110H Test

Monday, 28 May
Time: 50 minutes

Instructions

- Show all your work. Legibly, please! Simplify where you reasonably can.
- If you have a question, ask it!
- Use the back sides of all the pages for rough work or extra space.
- You may use a calculator and (all sides of) an aid sheet.

1. Compute $\frac{d y}{d x}$ for any four (4) of parts a-f. [12 $=4 \times 3$ each]
a. $y=x e^{x}$
b. $x^{2}-y=1+x$
c. $y=\ln (\cos (x))$
d. $y=\tan \left(x^{2}\right)$
e. $y=\cos (x)+e^{x^{2}}$
f. $y=\frac{x-1}{x^{2}+1}$
2. Do any two (2) of parts a-d. [$8=2 \times 4$ each]
a. Compute $\lim _{t \rightarrow 0} \frac{\tan (t)}{\sin (t)}$.
b. Find the coordinates of the tip of the parabola $y=x^{2}-2 x-3$.
c. Find the equation of the tangent line to $y=x^{2}+1$ at the point $(1,2)$.
d. Use the $\varepsilon-\delta$ definition of limits to verify that $\lim _{x \rightarrow 1}(4 x-3)=1$.
3. Find the domain and any and all intercepts, intervals of increase and decrease, maximum and minimum points, intervals of concavity, and inflection points of the function $g(x)=\frac{x+1}{x^{2}}=\frac{1}{x}+\frac{1}{x^{2}} .[10]$
