Mathematics 1110H - Calculus I: Limits, derivatives, and Integrals Trent University, Summer 2018

Actual Final Examination

Time-space: 09:00-12:00 in FPHL 117.
Brought to you by Стефан Біланюк.
Instructions: Do parts A and B, and, if you wish, part C. Show all your work and justify all your answers. If in doubt about something, ask!
Aids: Any calculator; (all sides of) one aid sheet; one (1) brain (no neuron limit).
Part A. Do all four (4) of $\mathbf{1 - 4}$.

1. Compute $\frac{d y}{d x}$ as best you can in any four (4) of a-f. $[20=4 \times 5$ each $]$
a. $y=3^{x}$
b. $x^{3}-y^{2}=0$
c. $y=x \cdot\left[\int_{1}^{x} t^{2} d t\right]$
d. $y=\frac{x}{x^{2}+2}$
e. $y=e^{x} \cos (x)$
f. $y=\tan ^{2}(x)$
2. Evaluate any four (4) of the integrals a-f. [$20=4 \times 5$ each]
a. $\int x \arctan (x) d x$
b. $\int_{0}^{\pi / 4} \cos (2 t) d t$
c. $\int_{e}^{e^{e}} \frac{1}{w \ln (w)} d w$
d. $\int \frac{1}{(2 y+1)^{2}} d y$
e. $\int z \tan (z) d z$
f. $\int_{0}^{1} 4 u e^{u^{2}} d u$
3. Do any four (4) of a-f. [$20=4 \times 5$ each]
a. Find the equation of the tangent line to $y=\sin (x)$ at $x=\frac{\pi}{2}$.
b. Compute $\lim _{x \rightarrow \infty} \frac{\ln \left(x^{2}\right)}{x}$.
c. Use the limit definition of the derivative to verify that $\frac{d}{d x} e^{x}=e^{x}$ for all x.
[You may assume that $\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1$.]
d. Find the minimum value of $f(x)=x e^{x}$, if it has one.
e. Use the $\varepsilon-\delta$ definition of limits to verify that $\lim _{x \rightarrow 3}(4-x)=1$.
f. Sketch the region between $y=x^{3}$ and $y=x$ for $-1 \leq x \leq 0$ and find its area.
4. Find the domain and all intercepts, vertical and horizontal asymptotes, and maximum, minimum, and inflection points of $f(x)=\frac{x^{2}+1}{x}$, and sketch its graph. [14]

Part B. Do any two (2) of 5-7. [28 $=2 \times 13$ each]
5. A pebble is dropped into a still pool of water, creating a circular ripple that moves out from the point of impact at a constant rate of $2 \mathrm{~m} / \mathrm{s}$. How are the total length of the ripple and the area enclosed by the ripple changing after $3 s$?
6. Consider the region in the first quadrant (i.e. where both $x \geq 0$ and $y \geq 0$) below $y=4-x$, and above both $y=4-3 x$ and $y=x^{2}-2 x+2$. Find the coordinates of the three corners of this region, sketch this region, and compute the area of this region.
7. What is the maximum area of a triangle whose vertices are the points $(0,0),(x, 0)$, and $\left(x, \frac{1}{1+x^{2}}\right)$ for some $x \geq 0$?

$$
[\text { Total }=100]
$$

Part C. Bonus problems! If you feel like it and have the time, do one or both of these.
\square. A dangerously sharp tool is used to cut a cube with a side length of 3 cm into 27 smaller cubes with a side length of 1 cm . This can be done easily with six cuts. Can it be done with fewer? (Rearranging the pieces between cuts is allowed.) If so, explain how; if not, explain
 why not. [1]
\triangle. Write a haiku touching on calculus or mathematics in general. [1]

What is a haiku?

seventeen in three:
five and seven and five of syllables in lines

