Mathematics $\mathbf{1 1 1 0 H}$ - Calculus I: Limits, derivatives, and Integrals Trent University, Summer 2018

Practice Final Examination

Time: 3 hours.
Brought to you by Стефан Біланюк.
Instructions: Do parts A and B, and, if you wish, part C. Show all your work and justify all your answers. If in doubt about something, ask!

Aids: Any calculator; (all sides of) one aid sheet; one (1) brain (no neuron limit).
Part A. Do all four (4) of 1-4.

1. Compute $\frac{d y}{d x}$ as best you can in any four (4) of a-f. [20 $=4 \times 5$ each]
a. $y=\left(\frac{x+1}{x-1}\right)^{2}$
b. $y=\int_{0}^{x} t e^{t^{2}} d t$
c. $\begin{aligned} & y=-\cos (t) \\ & x=\sin (t)\end{aligned}$
d. $\ln (x y)=0$
e. $y=\sin (\sqrt{x})$
f. $y=x^{\pi} e^{x}$
2. Evaluate any four (4) of the integrals a-f. [$20=4 \times 5$ each]
a. $\int \frac{e^{\sqrt{t}}}{2 \sqrt{t}} d t$
b. $\int_{0}^{\pi / 2} x \cos (x) d x$
c. $\int_{0}^{1} \arctan (y) d y$
d. $\int_{0}^{\ln (2)} e^{-y} d y$
e. $\int_{0}^{\sqrt{\pi}} z \cos \left(z^{2}\right) d z$
f. $\int_{0}^{\pi / 4} \tan ^{2}(z) d z$
3. Do any four (4) of a-f. [$20=4 \times 5$ each]
a. Let $f(x)=x^{2}+1$ and compute $f^{\prime}(1)$ using the limit definition of the derivative.
b. Use the $\varepsilon-\delta$ definition of limits to verify that $\lim _{x \rightarrow 0}(2 x-1)=-1$.
c. Compute $\lim _{n \rightarrow \infty} \frac{n^{2}}{e^{n}}$.
d. Sketch the region between $y=x^{2}$ and $y=\sqrt{x}, 0 \leq x \leq 1$, and find its area.
e. Find the equation of the tangent line to $y=\cos (x)$ at $x=\frac{\pi}{4}$.
f. Find the number b such that $\int_{0}^{b}(2 x+1) d x=2$.
4. Find the domain and any and all intercepts, vertical and horizontal asymptotes, and maximum, minimum, and inflection points of $f(x)=e^{-x^{2}}$, and sketch its graph. [12]

Part B. Do any two (2) of 5-7. [28 $=2 \times 14$ each]
5. What is the maximum area of a rectangle with its base on the x-axis and which has its two top corners on the semicircle $y=\sqrt{16-x^{2}}$?
6. Meredith, carrying a lamp 1.5 m above the ground, walks at $1 \mathrm{~m} / \mathrm{s}$ along level ground directly toward a 1 m tall post at night. How is the length of the shadow cast by the post in the lamplight changing at the instant that the lamp is $2 m$ from the post?

7. Sand is poured onto a level floor at the rate of $60 \mathrm{~L} / \mathrm{min}$. It forms a conical pile whose height is equal to the radius of the base. How fast is the height of the pile increasing when the pile is $2 m$ high? [The volume of a cone of height h and base radius r is $\frac{1}{3} \pi r^{2} h$.]

$$
[\text { Total }=100]
$$

Part C. Bonus problems! If you feel like it and have the time, do one or both of these.
○. $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\frac{1}{25}+\cdots=\frac{\pi^{2}}{6}$. Assuming this is so [which it is], what
is the series $\sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{2}}=1+\frac{1}{9}+\frac{1}{25}+\cdots$ equal to? [1]
¢. Write a haiku touching on calculus or mathematics in general. [1]

What is a haiku?

seventeen in three: five and seven and five of syllables in lines

Have some fun this summer, AND DROP BY NEXt YEAR TO TELL ME ABOUT IT!

