Mathematics 1110H – Calculus I: Limits, derivatives, and Integrals TRENT UNIVERSITY, Summer 2018 Practice Final Examination

Time: 3 hours.Brought to you by Стефан Біланюк.Instructions: Do parts A and B, and, if you wish, part C. Show all your work and justify
all your answers. If in doubt about something, ask!

Aids: Any calculator; (all sides of) one aid sheet; one (1) brain (no neuron limit).

Part A. Do all four (4) of 1-4.

1. Compute $\frac{dy}{dx}$ as best you can in any four (4) of **a**-**f**. [20 = 4 × 5 each]

a.
$$y = \left(\frac{x+1}{x-1}\right)^2$$
 b. $y = \int_0^x te^{t^2} dt$ **c.** $\begin{array}{l} y = -\cos(t) \\ x = \sin(t) \end{array}$
d. $\ln(xy) = 0$ **e.** $y = \sin(\sqrt{x})$ **f.** $y = x^{\pi}e^x$

2. Evaluate any four (4) of the integrals **a**-**f**. $[20 = 4 \times 5 \text{ each}]$

a.
$$\int \frac{e^{\sqrt{t}}}{2\sqrt{t}} dt$$
 b. $\int_{0}^{\pi/2} x \cos(x) dx$ **c.** $\int_{0}^{1} \arctan(y) dy$
d. $\int_{0}^{\ln(2)} e^{-y} dy$ **e.** $\int_{0}^{\sqrt{\pi}} z \cos(z^{2}) dz$ **f.** $\int_{0}^{\pi/4} \tan^{2}(z) dz$

3. Do any four (4) of **a**-**f**. $[20 = 4 \times 5 \text{ each}]$

a. Let $f(x) = x^2 + 1$ and compute f'(1) using the limit definition of the derivative.

b. Use the $\varepsilon - \delta$ definition of limits to verify that $\lim_{x \to 0} (2x - 1) = -1$.

c. Compute $\lim_{n \to \infty} \frac{n^2}{e^n}$.

d. Sketch the region between $y = x^2$ and $y = \sqrt{x}$, $0 \le x \le 1$, and find its area.

e. Find the equation of the tangent line to $y = \cos(x)$ at $x = \frac{\pi}{4}$.

f. Find the number b such that
$$\int_0^b (2x+1) dx = 2$$
.

4. Find the domain and any and all intercepts, vertical and horizontal asymptotes, and maximum, minimum, and inflection points of $f(x) = e^{-x^2}$, and sketch its graph. [12]

Part B. Do any *two* (2) of **5–7**. $[28 = 2 \times 14 \text{ each}]$

- 5. What is the maximum area of a rectangle with its base on the x-axis and which has its two top corners on the semicircle $y = \sqrt{16 x^2}$?
- 6. Meredith, carrying a lamp 1.5 m above the ground, walks at 1 m/s along level ground directly toward a 1 m tall post at night. How is the length of the shadow cast by the post in the lamplight changing at the instant that the lamp is 2 m from the post?

7. Sand is poured onto a level floor at the rate of 60 L/min. It forms a conical pile whose height is equal to the radius of the base. How fast is the height of the pile increasing when the pile is 2 m high? [The volume of a cone of height h and base radius r is $\frac{1}{3}\pi r^2 h$.]

|Total = 100|

Part C. Bonus problems! If you feel like it and have the time, do one or both of these.

O.
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25} + \dots = \frac{\pi^2}{6}$$
 Assuming this is so [which it is], what is the series
$$\sum_{k=0}^{\infty} \frac{1}{(2k+1)^2} = 1 + \frac{1}{9} + \frac{1}{25} + \dots$$
 equal to? [1]

 \bigcirc . Write a haiku touching on calculus or mathematics in general. [1]

What is a haiku? seventeen in three:

five and seven and five of syllables in lines

HAVE SOME FUN THIS SUMMER, AND DROP BY NEXT YEAR TO TELL ME ABOUT IT!