Mathematics 1110H – Calculus I: Limits, derivatives, and Integrals

TRENT UNIVERSITY, Summer 2018

Solutions to the Practice Final Examination

Time: Whatever, whenever.

Brought to you by Стефан Біланюк.

Instructions: Do parts **A**, **B**, and **C**, and, if you wish, part **D**. Show all your work and justify all your answers. If in doubt about something, ask!

Aids: Any calculator; (all sides of) one aid sheet; one (1) brain (no neuron limit).

Part A. Do all four (4) of **1–4**.

1. Compute $\frac{dy}{dx}$ as best you can in any four (4) of a-f. [20 = 4 × 5 each]

a.
$$y = \left(\frac{x+1}{x-1}\right)^2$$
 b. $y = \int_0^x te^{t^2} dt$ **c.** $y = -\cos(t)$ $x = \sin(t)$

$$\mathbf{d.} \, \ln(xy) = 0$$

d.
$$\ln(xy) = 0$$
 e. $y = \sin(\sqrt{x})$ **f.** $y = x^{\pi}e^{x}$

f.
$$y = x^{\pi} e^{x}$$

SOLUTIONS. a. Power, Chain, and Quotient Rules:

$$\frac{dy}{dx} = \frac{d}{dx} \left(\frac{x+1}{x-1}\right)^2 = 2\left(\frac{x+1}{x-1}\right) \cdot \frac{d}{dx} \left(\frac{x+1}{x-1}\right)
= 2\left(\frac{x+1}{x-1}\right) \cdot \frac{\left[\frac{d}{dx}(x+1)\right](x-1) - (x+1)\left[\frac{d}{dx}(x-1)\right]}{(x-1)^2}
= 2\left(\frac{x+1}{x-1}\right) \cdot \frac{1 \cdot (x-1) - (x+1) \cdot 1}{(x-1)^2} = 2\left(\frac{x+1}{x-1}\right) \cdot \frac{-2}{(x-1)^2} = \frac{-4(x+1)}{(x-1)^3} \quad \blacksquare$$

b. Using the Fundamental Theorem of Calculus: $\frac{dy}{dx} = \frac{d}{dx} \left(\int_{a}^{x} te^{t^2} dt \right) = xe^{x^2}$.

$$\mathbf{c.} \ \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\frac{d}{dt}\left(-\cos(t)\right)}{\frac{d}{dt}\sin(t)} = \frac{-\left(-\sin(t)\right)}{\cos(t)} = \frac{\sin(t)}{\cos(t)} = \tan(t) = -\frac{x}{y}. \blacksquare$$

d.
$$\ln(xy) = 0 \implies xy = 1 \implies y = \frac{1}{x} \implies \frac{dy}{dx} = \frac{d}{dx}x^{-1} = (-1)x^{-2} = -\frac{1}{x^2}$$
.

e. Chain and Power Rules:

$$\frac{dy}{dx} = \frac{d}{dx}\sin\left(\sqrt{x}\right) = \cos\left(\sqrt{x}\right) \cdot \frac{d}{dx}\sqrt{x} = \cos\left(\sqrt{x}\right) \cdot \frac{d}{dx}x^{1/2}$$
$$= \cos\left(\sqrt{x}\right) \cdot \frac{1}{2}x^{-1/2} = \frac{\cos\left(\sqrt{x}\right)}{2\sqrt{x}} \blacksquare$$

f. Product and Power Rules:

$$\frac{dy}{dx} = \frac{d}{dx} \left(x^{\pi} e^{x} \right) = \left[\frac{d}{dx} x^{\pi} \right] e^{x} + x^{\pi} \left[\frac{d}{dx} e^{x} \right] = \pi x^{\pi - 1} e^{x} + x^{\pi} e^{x} = x^{\pi - 1} e^{x} \left(\pi + x \right) \quad \blacksquare$$

2. Evaluate any four (4) of the integrals $\mathbf{a}-\mathbf{f}$. $20 = 4 \times 5$ each

a.
$$\int \frac{e^{\sqrt{t}}}{2\sqrt{t}} dt$$
 b.
$$\int_0^{\pi/2} x \cos(x) dx$$
 c.
$$\int_0^1 \arctan(y) dy$$

d.
$$\int_0^{\ln(2)} e^{-y} dy$$
 e. $\int_0^{\sqrt{\pi}} z \cos(z^2) dz$ **f.** $\int_0^{\pi/4} \tan^2(z) dz$

Solutions. a. We will use the substitution $u = \sqrt{t}$, so $du = \frac{1}{2\sqrt{t}} dt$:

$$\int \frac{e^{\sqrt{t}}}{2\sqrt{t}} dt = \int e^u du = e^u + C = e^{\sqrt{t}} + C \quad \blacksquare$$

b. We will use integration by parts with u = x and $v' = \cos(x)$, so u' = 1 and $v = \sin(x)$:

$$\int_0^{\pi/2} x \cos(x) \, dx = x \sin(x) |_0^{\pi/2} - \int_0^{\pi/2} 1 \sin(x) \, dx$$

$$= \left[\frac{\pi}{2} \sin\left(\frac{\pi}{2}\right) - 0 \sin(0) \right] - (-\cos(x)) |_0^{\pi/2}$$

$$= \left[\frac{\pi}{2} \cdot 1 - 0 \cdot 0 \right] + \left[\cos\left(\frac{\pi}{2}\right) - \cos(0) \right] = \frac{\pi}{2} + [0 - 1] = \frac{\pi}{2} - 1 \quad \blacksquare$$

c. We'll use integration by parts with $u=\arctan(y)$ and v'=1, so $u'=\frac{1}{1+y^2}$ and v=y. The remaining integral will be done using the substitution $w=1+y^2$, so $dw=2y\,dy$, and thus $y\,dy=\frac{1}{2}\,dw$, and $\begin{array}{ccc} y & 0 & 1 \\ w & 1 & 2 \end{array}$.

$$\begin{split} \int_0^1 \arctan(y) \, dy &= \int_0^1 u v' \, dy = \left. u v \right|_0^1 - \int_0^1 u' v \, dy = \left. y \arctan(y) \right|_0^1 - \int_0^1 \frac{y}{1 + y^2} \, dy \\ &= \left[1 \arctan(1) - 0 \arctan(0) \right] - \int_1^2 \frac{1}{w} \frac{1}{2} \, dw = \left[\frac{\pi}{4} - 0 \right] - \frac{1}{2} \mathrm{ln} \left(\frac{1}{w} \right) \right|_1^2 \\ &= \frac{\pi}{4} - \left[\frac{1}{2} \mathrm{ln} \left(\frac{1}{2} \right) - \frac{1}{2} \mathrm{ln} \left(\frac{1}{1} \right) \right] = \frac{\pi}{4} - \frac{1}{2} \mathrm{ln} \left(\frac{1}{2} \right) \end{split}$$

d. We will use the substitution s = -y, so ds = -1 dy and dy = -1 ds, and $\begin{pmatrix} y & 0 & \ln(2) \\ s & 0 & -\ln(2) \end{pmatrix}$.

$$\int_0^{\ln(2)} e^{-y} \, dy = \int_0^{-\ln(2)} e^s \, (-1) \, ds = -e^s |_0^{-\ln(2)}$$

$$= -e^{-\ln(2)} - \left(-e^0\right) = -\frac{1}{e^{\ln(2)}} - (-1) = -\frac{1}{2} + 1 = \frac{1}{2} \quad \blacksquare$$

e. We'll use the substitution $w=z^2$, so $dw=2z\,dz$ and thus $z\,dz=\frac{1}{2}\,dw$, and $\begin{pmatrix} z & 0 & \sqrt{\pi} \\ w & 0 & \pi \end{pmatrix}$.

$$\int_0^{\sqrt{\pi}} z \cos\left(z^2\right) \, dz = \int_0^{\pi} \cos(w) \cdot \frac{1}{2} \, dw = \left. \frac{1}{2} \sin(w) \right|_0^{\pi} = \frac{1}{2} \sin(\pi) - \frac{1}{2} \sin(0) = 0 - 0 = 0$$

f. We will use the trigonometric identity $\tan^2(z) = \sec^2(z) - 1$.

$$\int_0^{\pi/4} \tan^2(z) \, dz = \int_0^{\pi/4} \left[\sec^2(z) - 1 \right] \, dz = \left[\tan(z) - z \right]_0^{\pi/4}$$
$$= \left[1 - \frac{\pi}{4} \right] - [0 - 0] = 1 - \frac{\pi}{4} \quad \blacksquare$$

3. Do any four (4) of **a**-**g**. $[20 = 4 \times 5 \text{ each}]$

a. Let $f(x) = x^2 + 1$ and compute f'(1) using the limit definition of the derivative.

b. Use the $\varepsilon - \delta$ definition of limits to verify that $\lim_{x \to 0} (2x - 1) = -1$.

c. Compute $\lim_{n\to\infty} \frac{n^2}{e^n}$.

d. Sketch the region between $y = x^2$ and $y = \sqrt{x}$, $0 \le x \le 1$, and find its area.

e. Find the equation of the tangent line to $y = \cos(x)$ at $x = \frac{\pi}{4}$.

f. Find the number b such that $\int_0^b (2x+1) dx = 2$.

SOLUTIONS. a. Here goes:

$$f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0} \frac{\left[(1+h)^2 + 1 \right] - \left[1^2 + 1 \right]}{h}$$
$$= \lim_{h \to 0} \frac{\left[1 + 2h + h^2 + 1 \right] - 2}{h} = \lim_{h \to 0} \frac{2h + h^2}{h} = \lim_{h \to 0} (2+h) = 2 + 0 = 2 \quad \blacksquare$$

b. We need to verify that for every $\varepsilon > 0$, there is some $\delta > 0$, such that if $|x - 0| < \delta$, then $|(2x - 1) - (-1)| < \varepsilon$. As usual, we will try to reverse-engineer the necessary δ from ε . Suppose an $\varepsilon > 0$ is given. Then

$$|(2x-1)-(-1)|<\varepsilon \Leftrightarrow |2x-1+1|<\varepsilon \Leftrightarrow |2x|<\varepsilon \Leftrightarrow |x|<\frac{\varepsilon}{2} \Leftrightarrow |x-0|<\frac{\varepsilon}{2},$$

so $\delta = \frac{\varepsilon}{2}$ will do the job. Note that every step of our reverse-engineering process above is reversible, so if $|x-0| < \delta = \frac{\varepsilon}{2}$, then $|(2x-1)-(-1)| < \varepsilon$.

c. Here goes, using l'Hôpital's Rule twice:

$$\lim_{n \to \infty} \frac{n^2}{e^n} = \lim_{x \to \infty} \frac{x^2}{e^x} \xrightarrow{\infty} = \lim_{x \to \infty} \frac{\frac{d}{dx}x^2}{\frac{d}{dx}e^x} = \lim_{x \to \infty} \frac{2x}{e^x} \xrightarrow{\infty} = \infty$$

$$= \lim_{x \to \infty} \frac{\frac{d}{dx}2x}{\frac{d}{dx}e^x} = \lim_{x \to \infty} \frac{2}{e^x} \xrightarrow{\infty} = 0 \quad \blacksquare$$

d. Here are the curves, as plotted by Maple:

$$> plot([[sqrt(t),t,t=0..1],[t^2,t,t=0..1]]s)$$

The two curves intersect at x=0 and x=1; between these two points, $\sqrt{x} \ge x^2$. It follows that the area between the curves is given by:

Area =
$$\int_0^1 (\sqrt{x} - x^2) dx = \int_0^1 (x^{1/2} - x^2) dx = \left(\frac{2}{3}x^{3/2} - \frac{1}{3}x^3\right)\Big|_0^1$$

= $\left(\frac{2}{3}1^{3/2} - \frac{1}{3}1^3\right) - \left(\frac{2}{3}0^{3/2} - \frac{1}{3}0^3\right) = \frac{2}{3} - \frac{1}{3} = \frac{1}{3}$

e. $\frac{dy}{dx} = \frac{d}{dx}\cos(x) = -\sin(x)$, so the slope of the tangent line to $y = \cos(x)$ at $x = \frac{\pi}{4}$ is $m = -\sin\left(\frac{\pi}{4}\right) = -\frac{1}{\sqrt{2}}$. The line thus has an equation of the form $y = -\frac{1}{\sqrt{2}}x + b$. To determine b, we note that when $x = \frac{\pi}{4}$, we have $y = \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$, so $\frac{1}{\sqrt{2}} = -\frac{1}{\sqrt{2}} \cdot \frac{\pi}{4} + b$. It follows that $b = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \cdot \frac{\pi}{4} = \frac{1}{\sqrt{2}} \left(1 + \frac{\pi}{4}\right)$, and thus the equation of the tangent line is $y = -\frac{1}{\sqrt{2}}x + \frac{1}{\sqrt{2}}\left(1 + \frac{\pi}{4}\right)$.

f. Observe that:

$$\int_0^b (2x+1) \, dx = \left(x^2 + x\right) \Big|_0^b = \left(b^2 + b\right) - \left(0^2 + 0\right) b^2 + b$$

We therefore need to find the number b satisfying the equation $b^2 + b = 2$, *i.e.* $b^2 + b - 2 = 0$. Using the quadratic equation, it follows that:

$$b = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-2)}}{2 \cdot 1} = \frac{-1 \pm \sqrt{9}}{2} = \frac{-1 \pm 3}{2} = \begin{cases} \frac{2}{2} \\ -\frac{4}{2} \end{cases} = \begin{cases} 1 \\ -2 \end{cases}$$

There are thus two possible answers, b=1 and b=-2. Note that a definite integral may still make sense even if the "lower" limit is actually greater that the "upper" limit of the integral. \blacksquare

4. Find the domain and any and all intercepts, vertical and horizontal asymptotes, and maximum, minimum, and inflection points of $f(x) = e^{-x^2}$, and sketch its graph.

SOLUTION. We'll run through the usual checklist and then graph $f(x) = e^{-x^2}$:

i. Domain. Note that both $g(x) = e^x$ and $h(x) = -x^2$ are defined and continuous for all x. It follows that $f(x) = g(h(x)) = e^{-x^2}$ is also defined and continuous for all x. Thus the domain of f(x) is all of \mathbb{R} .

ii. Intercepts. Since $g(x) = e^x$ is never 0, $f(x) = e^{-x^2}$ can never equal 0 either, so it has no x-intercepts. For the y-intercept, simply note that $f(0) = e^{-0^2} = e^0 = 1$.

iii. Vertical asymptotes. $f(x) = e^{-x^2}$ is defined and continuous for all x, so it cannot have any vertical asymptotes.

iv. Horizontal asymptotes. We check for horizontal asymptotes:

$$\lim_{x\to\infty}e^{-x^2}=\lim_{x\to\infty}\frac{1}{e^{x^2}}=0\quad\text{and}\quad\lim_{x\to-\infty}e^{-x^2}=\lim_{x\to-\infty}\frac{1}{e^{x^2}}=0\,,$$

since $e^{x^2} \to \infty$ as $x^2 \to \infty$, which happens as $x \to \pm \infty$. Thus $f(x) = e^{-x^2}$ has the horizontal asymptote y = 0 in both directions.

v. Maxima and minima. $f'(x) = e^{-x^2} \frac{d}{dx} (-x^2) = -2xe^{-x^2}$, which equals 0 exactly when x = 0 because $-2e^{-x^2} \neq 0$ for all x. Note that this is the only critical point. Since $e^{-x^2} > 0$ for all x, $f'(x) = -2xe^{-x^2} > 0$ when x < 0 and x < 0 when x > 0, so x < 0 and decreasing for x < 0 and decreasing for x > 0. Thus x = 0 is an (absolute!) maximum point of x < 0, which has no minimum points. We summarize all this in the usual table:

$$\begin{array}{cccc}
x & (-\infty,0) & 0 & (0,\infty) \\
f'(x) & + & 0 & 1 \\
f(x) & \uparrow & \max & \downarrow
\end{array}$$

vi. Inflection points.

$$f''(x) = \frac{d}{dx} \left(-2xe^{-x^2} \right) = -2e^{-x^2} - 2x\frac{d}{dx} \left(-x^2 \right)$$
$$= -2e^{-x^2} - 2x \cdot \left(-2xe^{-x^2} \right) = \left(4x^2 - 2 \right) e^{-x^2},$$

which equals 0 exactly when $4x^2-2=0$, *i.e.* when $x=\pm\frac{1}{\sqrt{2}}$, because $e^{-x^2}\neq 0$ for all x. Since $e^{-x^2}>0$ for all x, $f''(x)=\left(4x^2-2\right)e^{-x^2}>0$ exactly when $4x^2-2>0$, *i.e.* when $|x|>\frac{1}{\sqrt{2}}$, and is <0 exactly when $4x^2-2<0$, *i.e.* when $|x|<\frac{1}{\sqrt{2}}$. Thus $f(x)=e^{-x^2}$ is concave up on $\left(-\infty,-\frac{1}{\sqrt{2}}\right)\cup\left(\frac{1}{\sqrt{2}},\infty\right)$ and concave down on $\left(-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$. Thus $f(x)=e^{-x^2}$ has two inflection points, at $x=\pm\frac{1}{\sqrt{2}}$. We summarize all this in the usual table:

vii. Graph. Cheating just a wee bit, this graph was plotted using a program called KAlgebra.

Part B. Do any *two* (2) of **5–7**. $[28 = 2 \times 14 \ each]$

5. What is the maximum area of a rectangle with its base on the x-axis and which has its two top corners on the semicircle $y = \sqrt{16 - x^2}$?

SOLUTION. A little reflection about this setup, preferably with a peek at a sketch,

will show that the base of such a rectangle runs from (-x,0) to (x,0), while the right side runs from (x,0) to $(x,\sqrt{16-x^2})$. The rectangle thus has width x-(-x)=2x and height $\sqrt{16-x^2}-0=\sqrt{16-x^2}$, and thus has area $A=2x\sqrt{16-x^2}$. Note that areas should not be negative. Since a rectangle of width 0, which occurs when x=0, has area 0, we must have $0 \le x$, and since a rectangle of height 0, which occurs when x=4, has area 0 too, we must also have $x \le 4$. This analysis also tells us what happens at the endpoints, and that if there is a single critical point in [0,4], it must give a maximum. For critical points:

$$\frac{dA}{dx} = \frac{d}{dx} 2x\sqrt{16 - x^2} = \left(\frac{d}{dx} 2x\right) \cdot \sqrt{16 - x^2} + 2x \cdot \left(\frac{d}{dx}\sqrt{16 - x^2}\right)$$

$$= 2\sqrt{16 - x^2} + 2x \cdot \frac{1}{2\sqrt{16 - x^2}} \cdot \left(\frac{d}{dx}\left(16 - x^2\right)\right)$$

$$= 2\sqrt{16 - x^2} + \frac{x}{\sqrt{16 - x^2}} \cdot (-2x) = 2\sqrt{16 - x^2} - \frac{2x^2}{\sqrt{16 - x^2}}$$

$$\frac{dA}{dx} = 0 \implies 2\sqrt{16 - x^2} - \frac{2x^2}{2\sqrt{16 - x^2}} = 0$$

$$\implies 2\sqrt{16 - x^2} \cdot \frac{\sqrt{16 - x^2}}{2} - \frac{2x^2}{2\sqrt{16 - x^2}} \cdot \frac{\sqrt{16 - x^2}}{2} = 0$$

$$\implies 16 - x^2 - 2x^2 = 16 - 3x^2 = 0 \implies x^2 = \frac{16}{3} \implies x = \pm \frac{4}{\sqrt{3}} \approx \pm 2.31$$

 $x = \frac{4}{\sqrt{3}}$ is the only critical point in the interval [0, 4], so it must give the maximum. The maximum area of a rectangle meeting the given specifications is therefore $A = 2 \cdot \frac{4}{\sqrt{2}}$.

$$\sqrt{16 - \left(\frac{4}{\sqrt{3}}\right)^2} = \frac{8}{\sqrt{3}} \cdot \sqrt{16 - \frac{16}{3}} = \frac{8}{\sqrt{3}} \cdot \sqrt{\frac{32}{3}} = \frac{8}{\sqrt{3}} \cdot \frac{4\sqrt{2}}{\sqrt{3}} = \frac{32\sqrt{2}}{3} \approx 15.1. \text{ Whew!} \blacksquare$$

6. Meredith, carrying a lamp 1.5 m above the ground, walks at 1 m/s along level ground directly toward a 1 m tall post at night. How is the length of the shadow cast by the post in the lamplight changing at the instant that the lamp is 2 m from the post?

SOLUTION. Let x be the horizontal distance between the lamp and the post, and let s be the length of the shadow, as in the slightly modified diagram above. We are given that $\frac{dx}{dt} = -1$. By the similarity of the triangles involved, $\frac{x+s}{1.5} = \frac{s}{1}$, so $x+s=1.5s=\frac{3}{2}s$ and so $x=\frac{1}{2}s$ and s=2x. It follows that $\frac{ds}{dt}\Big|_{x=2}=2\frac{dx}{dt}\Big|_{x=2}=2(-1)=-2$ m/s. Thus the length of the shadow is decreasing at a rate of 2 m/s at the instant in question. Note that it changes at the same constant rate at every other instant, too.

7. Sand is poured onto a level floor at the rate of 60 L/min. It forms a conical pile whose height is equal to the radius of the base. How fast is the height of the pile increasing when the pile is 2 m high? [The volume of a cone of height h and base radius r is $\frac{1}{3}\pi r^2h$.]

Solution. First, we'll use metres as out primitive unit; note that 1 $L=0.001\ m^3$, so $60\ L/min=0.06\ m^3/min$.

Since the height of the conical pile is always equal to the radius of the base, *i.e.* h=r, the volume of the cone is given by $V=\frac{1}{3}\pi r^2h=\frac{1}{3}\pi h^2h=\frac{\pi h^3}{3}$. It follows that

$$0.06 = \frac{dV}{dt} = \frac{d}{dt}\frac{\pi}{3}h^3 = \left(\frac{d}{dh}\frac{\pi}{3}h^3\right) \cdot \frac{dh}{dt} = \pi h^2 \cdot \frac{dh}{dt},$$

so $\frac{dh}{dt} = \frac{0.06}{\pi h^2}$ at any given instant. Plugging in h = 2 m then gives

$$\frac{dh}{dt}\Big|_{h=2,m} = \frac{0.06}{\pi^2} = \frac{0.06}{4\pi} = \frac{0.015}{\pi}.$$

If it matters, $\frac{0.015}{\pi} m/min = \frac{1.5}{\pi} cm/min \approx 0.48 cm/min$.

[Total = 100]

Part C. Bonus problems! If you feel like it and have the time, do one or both of these.

O.
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25} + \dots = \frac{\pi^2}{6}$$
. Assuming this is so [which it is], what is the series
$$\sum_{k=0}^{\infty} \frac{1}{(2k+1)^2} = 1 + \frac{1}{9} + \frac{1}{25} + \dots$$
 equal to? [1]

SOLUTION. A little algebra goes a long way here. Since

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25} + \dots = \left(1 + \frac{1}{9} + \frac{1}{25} + \dots\right) + \left(\frac{1}{4} + \frac{1}{16} + \frac{1}{36} + \dots\right)$$

$$= \left(1 + \frac{1}{9} + \frac{1}{25} + \dots\right) + \frac{1}{4}\left(1 + \frac{1}{4} + \frac{1}{9} + \dots\right) = \sum_{k=0}^{\infty} \frac{1}{(2k+1)^2} + \frac{1}{4}\sum_{n=1}^{\infty} \frac{1}{n^2},$$

it follows that
$$\sum_{k=0}^{\infty} \frac{1}{(2k+1)^2} = \frac{3}{4} \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{3}{4} \cdot \frac{\pi^2}{6} = \frac{\pi^2}{8}. \blacksquare$$

• Write a haiku touching on calculus or mathematics in general. [1]

What is a haiku?

seventeen in three: five and seven and five of syllables in lines

SOLUTION. None given! \circ

HAVE SOME FUN THIS SUMMER, AND DROP BY NEXT YEAR TO TELL ME ABOUT IT!