Mathematics $\mathbf{1 1 1 0 H}$ - Calculus I: Limits, derivatives, and Integrals Trent University, Summer 2018
 Assignment \#6
 Static cling meets calculus?
 Due at the exam on Thursday, 14 June.

Static cling keeps a hair $2 \pi \mathrm{~cm}$ long stuck to the surface of a spherical balloon while it is being inflated, not necessarily at a constant rate. The balloon remains spherical at all times, and the hair, which doesn't stretch or shrink, remains as straight as possible on its surface. [This means that it lies on a "great circle" of the sphere that has the same radius and centre as the sphere. You can think of it as the equator of the sphere if you like.]

1. How is the radius of the balloon changing when it is 4 cm , if the ends of the hair are moving apart at $1 \mathrm{~cm} / \mathrm{s}$ at that instant? [10]
