Mathematics 1110H - Calculus I: Limits, derivatives, and Integrals
 Trent University, Summer 2018
 Assignment \#1
 Square - Circle $=$ Squircle?
 Due on Monday, 14 May.

Let's call the shape that you get by removing four mutually tangent quarter-circles with radius $\frac{s}{2}$ from a square with side length s a squircle* of side s. (See the leftmost shape in the diagram below.)

1. What are the area and perimeter of a squircle of side s ? [1]

A single squircle has four points where the quarter-circles that were removed met. Consider the following process:

At step $n=0$ we have a single squircle for which $s=2$.
At step $n=1$, we attach four squircles for which $s=\frac{1}{4} \cdot 2=\frac{1}{2}$ to the squircle in step 0 , attaching one (at one of its points) to each point of the larger squircle. (See the middle shape in the diagram above.) The resulting shape has $3 \cdot 4=12$ points (where quarter-circles met) to which nothing is yet attached. Let's call these the free points of the shape.

At step $n=2$, we attach a squircle for which $s=\frac{1}{4} \cdot \frac{1}{2}=\left(\frac{1}{4}\right)^{2} \cdot 2=\frac{1}{8}$ to each of the free points in the shape in step 1. (See the rightmost shape in the diagram above.) The resulting shape has $3 \cdot 12=3 \cdot(3 \cdot 4)=3^{2} \cdot 4=36$ free points.

At step $n=3$, we attach a squircle for which $s=\frac{1}{4} \cdot \frac{1}{8}=\left(\frac{1}{4}\right)^{3} \cdot 2=\frac{1}{32}$ to each of these the free points in the shape in step 2. (Draw your own picture!) The resulting shape has $3 \cdot 36=3 \cdot\left(3^{2} \cdot 4\right)=3^{3} \cdot 4=108$ free points.

Repeat for each integer $n>3 \ldots$
2. Find formulas for the values of s for the squircles added at step n and for the number of free points of the shape obtained in step n. [2]
3. Find a formula for the total length of the perimeter of the shape obtained in step n. [2]
4. Find a formula for the total area of the shape obtained in step n. [2]
5. What are the total length of the perimeter and the total area of the shape obtained after infinitely many steps of the process? [3]

[^0]
[^0]: * This shape probably has a name already, but I don't know it . . . :-)

