## Mathematics 1100Y - Calculus I: Calculus of one variable

Trent University, Summer 2012
Solutions to Assignment \#6
Solving equations with Maple
Recall that $\sinh (x)=\frac{e^{x}-e^{-x}}{2}$. Its inverse function is often denoted by $\operatorname{arcsinh}(x)$.

1. Give a derivation of an expression for $\operatorname{arcsinh}(x)$ in terms of powers, roots, and the natural logarithm function. When does this expression make sense? [5]
Hint: This amounts to solving the equation $x=\sinh (y)=\frac{e^{y}-e^{-y}}{2}$ for $y$.
Note: You may not look up the answer for question 1.
Solution. Following the hint:

$$
\begin{aligned}
x=\frac{e^{y}-e^{-y}}{2} & \Longrightarrow 2 x=e^{y}-e^{-y} \\
& \Longrightarrow e^{y}-2 x-e^{-y}=0 \\
& \Longrightarrow\left(e^{y}\right)^{2}-2 x e^{y}-e^{-y} e^{y}=0 \\
& \Longrightarrow\left(e^{y}\right)^{2}-2 x e^{y}-1=0 \\
& \Longrightarrow e^{y}=\frac{-(-2 x) \pm \sqrt{(-2 x)^{2}-4 \cdot 1 \cdot(-1)}}{2 \cdot 1}=\frac{2 x \pm \sqrt{4 x^{2}+4}}{2} \\
& \Longrightarrow e^{y}=x \pm \sqrt{x^{2}+1} \\
& \Longrightarrow y=\ln \left(x \pm \sqrt{x^{2}+1}\right)
\end{aligned}
$$

Note that since $\sqrt{x^{2}+1} \geq x, x-\sqrt{x^{2}+1}<0$ for all $x$, so $\ln \left(x-\sqrt{x^{2}+1}\right)$ is not defined for any real $x$. By the same token, $x+\sqrt{x^{2}+1}>0$ for all $x$, so $\ln \left(x+\sqrt{x^{2}+1}\right)$ is defined for all real $x$. Thus $\operatorname{arcsinh}(x)=\ln \left(x+\sqrt{x^{2}+1}\right)$.
2. Use Maple to find an expression for arcsinh in terms of powers, roots, and the natural logarithm function. If it is different from the expression you obtained in answering $\mathbf{1}$, do the two expressions really amount to the same thing or not? [5]

Hint: Maple has a command called solve ...
Solution. Using both hints:

$$
\begin{aligned}
& >\operatorname{solve}(\mathrm{x}=(\exp (\mathrm{y})-\exp (-\mathrm{y})) / 2, \mathrm{y}) \\
& \qquad \ln \left(x+\sqrt{x^{2}+1}\right), \ln \left(x-\sqrt{x^{2}+1}\right)
\end{aligned}
$$

Note that this is the same as the solution obtained above in answer to question 1.

