Mathematics 1100Y - Calculus I: Calculus of one variable

Trent University, Summer 2012
Solutions to Assignment \#2
Plot for against with Maple
Before tackling this assignment, please at least skim through the handout A very quick start with Maple and Professor G.E. Urroz's Getting started with Maple 10 (there's a link to it on the course web page), and play around with Maple a bit. You might also wish to consult Maple's help for details on how to plot graphs of various sorts.

For questions 1 and 2 below please submit a printout of a Maple worksheet(s) as your solution.

1. Use Maple to plot the graphs of $y=1, y=x, y=\sqrt{x}$, and $y=\sqrt{1-x^{2}}$, for $0 \leq x \leq 1$ in each case. [4]
Solution. Here goes, in order:
$>\operatorname{plot}(1, x=0 . .1)$

$>\operatorname{plot}(x, x=0 . .1)$

$>\operatorname{plot}(\operatorname{sqrt}(\mathrm{x}), \mathrm{x}=0 . .1)$

$>\operatorname{plot}\left(\operatorname{sqrt}\left(1-x^{\wedge} 2\right), x=0 \ldots 1\right)$

The plots above were scaled down to save paper.
2. Use Maple to plot the curves given by the equations $x=y^{2}, x=|y|, x^{2}+y^{2}=1$, and $x y=1$, for $0 \leq x \leq 1$ and $0 \leq y \leq 1$ in each case. [4]
Solution. And again, in order, though we first invoke the plots package to get access to the implicitplot command:

```
> with(plots);
```

[animate, animate3d, animatecurve, arrow, changecoords, complexplot, complexplot3d, conformal, conformal3d, contourplot, contourplot3d, coordplot, coordplot3d, densityplot, display, dualaxisplot, fieldplot, fieldplot3d, gradplot, gradplot3d, implicitplot, implicitplot3d, inequal, interactive, interactiveparams, intersectplot, listcontplot, listcontplot3d, listdensityplot, listplot, listplot3d, loglogplot, logplot, matrixplot, multiple, odeplot, pareto, plotcompare, pointplot, pointplot3d, polarplot, polygonplot, polygonplot3d, polyhedra_ supported, polyhedraplot, rootlocus, semilogplot, setcolors, setoptions, setoptions3d, spacecurve, sparsematrixplot, surfdata, textplot, textplot3d, tubeplot]

```
> implicitplot(x=y^2,x=0..1,y=0..1)
```


$>$ implicitplot($\mathrm{y}=|\mathrm{x}|, \mathrm{x}=0 . .1, \mathrm{y}=0 . .1$)

implicitplot($x^{\wedge} 2+y^{\wedge} 2=1, x=0 . .1, y=0 . .1$)


```
> implicitplot(x*y=1,x=0..1,y=0..1)
```


This last plot deserves a second glance. Why is apparently empty? (Hint: Just how much of the curve $x y=1$ actually gets inside the square given by $0 \leq x \leq 1$ and $0 \leq y \leq 1$?)
3. Which of the curves you plotted in $\mathbf{1}$ and $\mathbf{2}$ are really the same? [2]

Solution. There are three matches:
$y=x$ for $0 \leq x \leq 1$ is the same as $y=|x|$ for $0 \leq x \leq 1$ and $0 \leq y \leq 1$.
$y=\sqrt{x}$ for $0 \leq x \leq 1$ is the same as $x=y^{2}$ for $0 \leq x \leq 1$ and $0 \leq y \leq 1$.
$y=\sqrt{1-x^{2}}$ for $0 \leq x \leq 1$ is the same as $x^{2}+y^{2}=1$ for $0 \leq x \leq 1$ and $0 \leq y \leq 1$.
Note that without the specified restrictions on x and y, none of these would match. For example, $y=x$ and $y=|x|$ do not agree when $x<0$.

