Mathematics 1100Y - Calculus I: Calculus of one variable
 Trent University, Summer 2012

 Quizzes

 Quizzes}

Quiz \#1. Wednesday, 16 May, 2012. [10 minutes]
Let $f(x)=2 x-1$.

1. Sketch the graph of $f(x)$. [2]
2. Sketch the graph of $f^{-1}(x)$, the inverse function of $f(x)$. [1]
3. Find a formula for $f^{-1}(x)$. [2]

Quiz \#2. Wednesday, 23 May, 2012. [10 minutes]
Consider the parametric curve given by $y=\cos (2 t)$ and $x=\cos (t)$, where $-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}$.

1. Show that every point on this curve is on the parabola given by $y=2 x^{2}-1$. [3]
2. Sketch the parametric curve. (Warning: it is not all of the parabola ...) [2]

Quiz \#3. Monday, 28 May, 2012. [10 minutes]

1. Compute $\lim _{x \rightarrow 0} \frac{(x+1) \sin (x)}{x^{2}+x}$. [5]

Quiz \#4. Wednesday, 30 May, 2012. [10 minutes]
Do one (1) of questions 1 or 2.

1. Compute $\lim _{x \rightarrow \infty} \frac{x^{2}+\cos (x)}{2 x^{2}+3 x}$. [5]
2. Let $f(x)=3 x+2$. Use the limit definition of the derivative to show that $f^{\prime}(x)=3$. [5]

Quiz \#5. Monday, 4 June 2012. [10 minutes]

1. Compute $f^{\prime}(x)$ for $f(x)=\arctan \left(\frac{x}{x+1}\right)$. [5]

Quiz \#6. Wednesday, 6 June, 2012. [10 minutes]

1. A spherical balloon is blown up, with helium being pumped into it at a constant rate of 8π $\mathrm{m}^{3} / \mathrm{s}$. How is the radius of the balloon changing at the moment that the radius is $\frac{1}{2} \mathrm{~m}$? [10] [The volume of a sphere of radius r is $\frac{4}{3} \pi r^{3}$.]

Quiz \#7. Monday, 11 Wednesday, 13 June, 2012. [10 minutes]

1. Find the maxima and minima of $g(t)=\frac{t^{2}-1}{t^{2}+1}$ on the interval $[-2,1]$. [5]

Quiz \#8. Wednesday, 20 June, 2012. [10 minutes]

1. Compute the average slope of $f(x)=x^{3}-x$ on the interval $[-1,2]$ and find a point c inside this interval such that $f^{\prime}(c)$ is equal to the average slope of $f(x)$ on the interval. [5]

Quiz \#9. Monday, 25 June, 2012. [10 minutes]

1. Compute $\int_{0}^{\pi / 6} \cos (3 x) d x$. [5]

Quiz \#10. Wednesday, 27 June, 2012. [10 minutes]

1. Find the area between $y=x^{2}$ and $y=x+2$ for $0 \leq x \leq 6$. [5]

Quiz \#11. Wednesday, 4 July, 2012. [15 minutes]
Do one (1) of questions 1 or 2 .

1. Sketch the region between $r=0$ and $r=\sec (\theta)$ for $-\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4}$ in polar coordinates and find its area. [5]
2. Sketch the solid obtained by revolving the region between $y=0$ and $y=\sqrt{x}$ for $0 \leq x \leq 4$ about the x-axis and find its volume. [5]

Quiz \#12. Monday, 9 July, 2012. [10 minutes]

1. Sketch the solid obtained by revolving the region below $y=x$ and above $y=x^{2}$ for $0 \leq x \leq 1$ about the y-axis and find its volume. [5]

Quiz \#13. Wednesday, 11 July, 2012. [12 minutes]

1. Compute $\int \sec ^{4}(x) d x$. [5]

Quiz \#14. Wednesday, 18 July, 2012. [15 minutes]
Do one (1) of questions 1 or 2.

1. Compute $\int \frac{1}{\sqrt{1+x^{2}}} d x$. [5] 2. Compute $\int_{1}^{\infty} \frac{1}{x^{2}} d x$. [5]

Quiz \#15. Monday, 23 July, 2012. [15 minutes]

1. Compute $\int \frac{1}{x^{3}+x} d x$. [5]

Quiz \#16. Wednesday, 25 July, 2012. [15 minutes]
Do one (1) of questions 1 or 2.

1. Find the arc-length of the curve given in polar coordinates by $r=\theta^{2}$, where $0 \leq \theta \leq \sqrt{5}$. [5]
2. Find the area of the surface obtained by revolving the curve $y=\frac{2}{3} x^{3 / 2}$, where $0 \leq x \leq 1$, about the y-axis. [5]

Quiz \#17. Take-Home! Due on Monday, 30 July, 2012. [5 days]

1. A cylindrical hole is drilled through a sphere, with the centre line of the cylinder passing through the centre of the sphere. After the drilling is completed, the cylindrical hole in the remaining solid is exactly 6 cm high. Determine the volume of the remaining solid. [5]
Hint: The volume of the remaining solid is $36 \pi \mathrm{~cm}^{3}$.
Quiz \#18. Monday, 30 July, 2012. [15 minutes]
Do one (1) of questions 1 or 2 .
2. Compute $\lim _{n \rightarrow \infty} \frac{\cos (n)}{n!}$. [5] Compute $\sum_{n=0}^{\infty} \pi e^{-n}$.

Quiz \#19. Wednesday, 1 August, 2012. [15 minutes]
Determine whether each of the following series converges or diverges.

1. $\sum_{n=0}^{\infty} \frac{n+2}{n^{2}+3 n+1}$ [2.5]
2. $\sum_{n=2}^{\infty} \frac{1}{n \ln (n)}[2.5]$
