
Mathematics 1100Y – Calculus I: Calculus of one variable
Trent University, Summer 2012

Solutions to the Final Examination

Time: 14:00–17:00, on Tuesday, 7 August, 2012. Brought to you by Stefan B�lan�k.
Instructions: Do parts ♥, ♦, and ♣, and, if you wish, part ♠. Show all your work and
justify all your answers. If in doubt about something, ask!

Aids: Calculator; up to two (≤ 2) aid sheets; at most one (≤ 1) brain.

Part ♥. Do all four (4) of 1–4.

1. Compute
dy

dx
as best you can in any three (3) of a–f. [15 = 3 × 5 each]

a. y = tan(2x) b. exey = 1 c. y = ex cos(x)

d. y =
x2 + 9
x+ 2

e.
y = t+ 1
x = sec(t) f. y =

∫ x

1

ez+1 dz

Solutions.

a. [Chain Rule]
dy

dx
=

d

dx
tan(2x) = sec2(2x) · d

dx
(2x) = 2 sec2(2x) �

b. [Solve for y] exey = 1 =⇒ ey =
1
ex

= e−x =⇒ y = −x =⇒ dy

dx
= −1 �

c. [Product Rule]

dy

dx
=

d

dx
(ex cos(x)) =

[
d

dx
ex
]
· cos(x) + ex ·

[
d

dx
cos(x)

]
= ex cos(x) + ex [− sin(x)] = ex (cos(x)− sin(x)) �

d. [Quotient Rule]

dy

dx
=

d

dx

(
x2 + 9
x+ 2

)
=

d
dx

(
x2 + 9

)
· (x+ 2)−

(
x2 + 9

)
· ddx (x+ 2)

(x2 + 9)2

=
2x · (x+ 2)−

(
x2 + 9

)
· 1

(x2 + 9)2
=

2x2 + 4x−
(
x2 + 9

)
· 1

(x2 + 9)2
=
x2 + 4x− 9
(x2 + 9)2

�

e. [Parametrick!]
dy

dx
=

dy
dt
dx
dt

=
d
dt (t+ 1)
d
dt sec(t)

=
1

sec(t) tan(t)
=

1
x
√

1 + x2
�

f. [Fundamental Theorem of Calculus]
dy

dx
=

d

dx

∫ x

1

ez+1 dz = ex+1 �
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2. Evaluate any three (3) of the integrals a–f. [15 = 3 × 5 each]

a.
∫

1
x3 + 4x

dx b.
∫ ∞
e

1
xln(x)

dx c.
∫

cos(2t+ 1) dt

d.
∫ π/2

0

sin2(z) cos3(z) dz e.
∫
ex sec (ex) dx f.

∫ 1

0

arctan(x) dx

Solutions.

a. [Partial Fractions] x3 + 4x = x
(
x2 + 4

)
so

1
x3 + 4x

=
A

x
+
Bx+ C

x2 + 4
, where 1 =

A
(
x2 + 4

)
+ (Bx + C)x = (A + B)x2 + Cx + 4A. Thus A + B = 0, C = 0, and 4A = 1,

so A = 1
4 , B = − 1

4 , and C = 0. Hence

∫
1

x3 + 4x
dx =

∫ ( 1
4

x
+
− 1

4x

x2 + 4

)
dx =

1
4

∫
1
x
dx− 1

4

∫
x

x2 + 4
dx

=
1
4

ln(x)− 1
4

∫
1
u

1
2
du

(substituting u = x2 + 4, so
du = 2x dx and x dx = 1

2 du)

=
1
4

ln(x)− 1
8

ln(u) +K =
1
4

ln(x)− 1
8

ln
(
x2 + 4

)
+K �

b. [Improper Integral]

∫ ∞
e

1
xln(x)

dx = lim
t→∞

∫ t

e

1
xln(x)

dx = lim
t→∞

∫ ln(t)

1

1
u
du

(substituting u = ln(x), so du =
1
x
dx and x e t

u 1 ln(t) )

= lim
t→∞

ln (u)|ln(t)
1 = lim

t→∞
[ln (ln(t))− ln(1)] = lim

t→∞
ln (ln(t)) =∞

since as t→∞, ln(t)→∞, and hence ln (ln(t))→∞ too. �

c. [Substitution] Let u = 2t+ 1, so du = 2 dt and dt = 1
2 du.

∫
cos(2t+ 1) dt =

∫
cos(u)

1
2
du =

1
2

sin(u) + C =
1
2

sin(2t+ 1) + C �
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d. [Trig Identity and Substitution] Let u = sin(z), so du = cos(z) dz and z 0 π/2
u 0 1 .

∫ π/2

0

sin2(z) cos3(z) dz =
∫ π/2

0

sin2(z) cos2(z) cos(z) dz

=
∫ π/2

0

sin2(z)
(
1− sin2(z)

)
cos(z) dz

=
∫ 1

0

u2
(
1− u2

)
du =

∫ 1

0

(
u2 − u4

)
du

=
(
u3

3
− u5

5

)∣∣∣∣1
0

=
(

13

3
− 15

5

)
−
(

03

3
− 05

5

)
=

1
3
− 1

5
=

2
15

�

e. [Substitution] Let w = ex, so dw = ex dx.∫
ex sec (ex) dx =

∫
sec(w) dw = ln (sec(w) + tan(w)) + C

= ln (sec (ex) + tan (ex)) + C �

f. [Integration by Parts] Let u = arctan(x) and v′ = 1, so u′ =
x

1 + x2
and v = x.

∫ 1

0

arctan(x) dx =
∫ 1

0

uv′ dx = uv|10 −
∫ 1

0

u′v dx = x arctan(x)|10 −
∫ 1

0

x

1 + x2
dx

= 1 arctan(1)− 0 arctan(0)−
∫ 2

1

1
w

1
2
dw

(Where w = 1 + x2, so
dw = 2 dx and dx = 1

2 dw,

while x 0 1
w 1 2 .)

=
π

4
− 0− 1

2
ln(w)

∣∣∣∣2
1

=
π

4
−
[

1
2

ln(2)− 1
2

ln(1)
]

=
π

4
− 1

2
ln(2) +

1
2
· 0

=
π

4
− 1

2
ln(2) =

π

4
− ln

(√
2
)

�
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3. Do any three (3) of a–f. [15 = 3 × 5 each]

a. Use the Right-hand Rule to compute the definite integral
∫ 2

0

(x+ 1) dx.

b. Compute lim
n→∞

n sin(nπ).

c. Sketch the region between r = 0 and r = sec(θ), for 0 ≤ θ ≤ π/4, in polar
coordinates and find its area.

d. Find the area of the surface obtained by revolving the curve y = x, for 0 ≤ x ≤ 1,
about the y-axis.

e. Use the limit definition of the derivative to compute f ′(2) if f(x) = x2 + 1.

f. Determine whether the series
∞∑
n=0

n

e2n
converges or diverges.

Solutions.

a. We plug into the formula,
∫ b

a

f(x) dx = lim
n→∞

n∑
i=1

b− a
n
· f
(
a+

b− a
n

i

)
, for the Right-

Hand Rule and grind away.∫ 2

0

(x+ 1) = lim
n→∞

n∑
i=1

2− 0
n

([
0 +

2− 0
n

i

]
+ 1
)

= lim
n→∞

n∑
i=1

2
n

(
2
n
i+ 1

)

= lim
n→∞

2
n

n∑
i=1

(
2
n
i+ 1

)
= lim
n→∞

2
n

([
n∑
i=1

2
n
i

]
+

[
n∑
i=1

1

])

= lim
n→∞

2
n

([
2
n

n∑
i=1

i

]
+ [n]

)
= lim
n→∞

2
n

([
2
n
· n(n+ 1)

2

]
+ n

)
= lim
n→∞

2
n

([n+ 1] + n) = lim
n→∞

2
n

(2n+ 1) = lim
n→∞

(
4n
n

+
2
n

)
= lim
n→∞

(
4 +

2
n

)
= 4 + 0 = 4 �

b. Since sin(nπ) = 0 for every integer n, we have lim
n→∞

n sin(nπ) = lim
n→∞

n ·0 = lim
n→∞

0 = 0.

[Yes, a trick question!] �

c. Since x = r cos(θ) = sec(θ) cos(θ) =
1

cos(θ)
cos(θ) = 1 for all

points on the curve, it is just the vertical line x = 1 in Cartesian
coordinates. Also, θ = 0 is the positive x-axis and θ = π/4 is the
part of y = x in the first quadrant, so the region looks like:

To find its area, one could certainly use the area formula for polar coordinates and

evaluate the integral
∫ π/4

0

1
2

sec2(θ) dθ, but it’s easier to use the area formula for a triangle:
1
2bh = 1

2 · 2 · 2 = 2 . . . �
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d. Here is a crude sketch of the surface, a right-circular cone with radius 1 and height 1:
Since we are revolving about the y-axis, the point on the
curve y = x at x is revolved in a circle with radius
r = x− 0 = x = y. We plug this and the given limits
into the surface area formula and chug away, using y as
the independent variable. [Because?] Note that since
y = x for curve, 0 ≤ y ≤ 1 for the piece of the curve in

question, and that
dx

dy
=
dy

dy
= 1.

SA =
∫ b

a

2πr

√
1 +

(
dx

dy

)2

dy =
∫ 1

0

2πy
√

1 + 12 dy = 2
√

2π
∫ 1

0

y dy

= 2
√

2π
y2

2

∣∣∣∣1
0

= 2
√

2π
12

2
− 2
√

2π
02

2
=
√

2π �

e. Recall that f ′(a) = lim
h→0

f(a+ h)− f(a)
h

, so:

f ′(2) = lim
h→0

f(2 + h)− f(2)
h

= lim
h→0

[
(2 + h)2 + 1

]
−
[
22 + 1

]
h

= lim
h→0

[
4 + 4h+ h2 + 1

]
− [4 + 1]

h
= lim
h→0

4h+ h2

h

= lim
h→0

(4 + h) = 4 + 0 = 4 �

f. We will use the Ratio Test to determine whether
∞∑
n=0

n

e2n
converges or diverges.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ n+1
e2(n+1)

n
e2n

∣∣∣∣∣ = lim
n→∞

n+ 1
e2n+2

· e
2n

n
= lim
n→∞

e2n

e2n+2
· n+ 1

n

= lim
n→∞

1
e2

(
1 +

1
n

)
=

1
e2

(1 + 0) =
1
e2

< 1

Since lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1, it follows by the Ratio Test that the given series converges. (Ab-

solutely, too.) �
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4. Consider the curve y =
x2

2
0 ≤ x ≤ 2.

a. Sketch this curve. [1]
b. Sketch the surface obtained by revolving this curve about the x-axis. [1]

c. Compute either i. the length of the curve
or ii. the area of this surface. (Not both!) [8]

Solutions.

a & b. A little shaky drawing the curve . . . :-)

�

c. i. We plug the given limits for x and
dy

dx
=

d

dx

(
x2

2

)
=

2x
2

= x into the formula for

arc-length:

arc-length =
∫ 2

0

√
1 +

(
dy

dx

)2

dx =
∫ 2

0

√
1 + x2 dx

Substitute x = tan(θ), so
dx = sec2(θ) dθ and√

1 + x2 =
√

1 + tan2(θ)
= sec(θ).

=
∫ x=2

x=0

sec(θ) sec2(θ) dθ =
∫ x=2

x=0

sec3(θ) dθ = · · · See the solution to c ii.
for the relevant formula.

=
1
2

tan(θ) sec(θ) +
1
2

ln (tan(θ) + sec(θ))
∣∣∣∣x=2

x=0

=
1
2
x
√

1 + x2 +
1
2

ln
(
x+

√
1 + x2

)∣∣∣∣2
0

=
[

1
2

2
√

1 + 22 +
1
2

ln
(

2 +
√

1 + 22
)]
−
[

1
2

0
√

1 + 02 +
1
2

ln
(

0 +
√

1 + 02
)]

=
[√

5 +
1
2

ln
(

2 +
√

5
)]
−
[
0 +

1
2

ln(1)
]

=
√

5 +
1
2

ln
(

2 +
√

5
)

=
√

5 + ln
(√

2 +
√

5
)

(Recall that ln(1) = 0 and aln(b) = ln (ba)). Not a nice-looking answer, is it? �
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c. ii. We plug the given limits for x,
dy

dx
=

d

dx

(
x2

2

)
=

2x
2

= x, and r = y − 0 = y =

x2

2
into the formula for surface area. Along the way we will use the reduction formula∫

secn(θ) dθ =
1

n− 1
tan(θ) secn−2(θ) +

n− 2
n− 1

∫
secn−2(θ) dθ.

SA =
∫ 2

0

2πr

√
1 +

(
dy

dx

)2

dx =
∫ 2

0

2π
x2

2

√
1 + x2 dx = π

∫ 2

0

x2
√

1 + x2 dx

Using the same substitution as in the solution to bf c. ii. above gives:

= π

∫ x=2

x=0

sec2(θ) sec(θ) sec2(θ) dθ = π

∫ x=2

x=0

sec5(θ) dθ

Applying the reduction formula for
∫

secn(θ) dθ with n = 5 gives:

= π

[
1

5− 1
tan(θ) sec5−2(θ)

∣∣∣∣x=2

x=0

+
5− 2
5− 1

∫ x=2

x=0

sec5−2(θ) dθ

]

= π

[
1
4

tan(θ) sec3(θ)
∣∣∣∣x=2

x=0

+
3
4

∫ x=2

x=0

sec3(θ) dθ

]
Applying the reduction formula again with n = 3 now gives:

= π

[
1
4

tan(θ) sec3(θ)
∣∣∣∣x=2

x=0

+
3
4

(
1

3− 1
tan(θ) sec3−2(θ)

∣∣∣∣x=2

x=0

+
3− 2
3− 1

∫ x=2

x=0

sec3−2(θ) dθ

)]

= π

[
1
4

tan(θ) sec3(θ)
∣∣∣∣x=2

x=0

+
3
4

(
1
2

tan(θ) sec(θ)
∣∣∣∣x=2

x=0

+
1
2

∫ x=2

x=0

sec(θ) dθ

)]

= π

[
1
4

tan(θ) sec3(θ)
∣∣∣∣x=2

x=0

+
3
8

tan(θ) sec(θ)
∣∣∣∣x=2

x=0

+
3
8

ln (tan(θ) + sec(θ))
∣∣∣∣x=2

x=0

]
Substituting back as in the solution to c i. gives:

= π

[
1
4
x
(√

1 + x2
)3

+
3
8
x
√

1 + x2 +
3
8

ln
(
x+

√
1 + x2

)]∣∣∣∣2
0

= π

[
1
4

2
(√

1 + 22
)3

+
3
8

2
√

1 + 22 +
3
8

ln
(

2 +
√

1 + 22
)]

− π
[

1
4

0
(√

1 + 02
)3

+
3
8

0
√

1 + 02 +
3
8

ln
(

0 +
√

1 + 02
)]

= π

[
5
2

√
5 +

3
4

√
5 +

3
8

ln
(

2 +
√

5
)]

Ugh!! �
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Part ♦. Do any two (2) of 5–7. [30 = 2 × 15 each]

5. Sketch the solid obtained by revolving the region below y =
√

25− x2 and above
y = 0, for 4 ≤ x ≤ 5, about the y-axis and find its volume. [15]

Solution. Here’s a sketch of the solid:

We’ll use the disk/washer method to find the volume of the solid. Since the axis of
revolution was a vertical line, we will use y as the independent variable. Note that for
the region in question, 0 ≤ y ≤

√
52 − 42 = 3. The outside radius of the washer at y is

R = x =
√

52 − y2 =
√

25− y2 and its inner radius is r = 4. Plugging all sthis into the
appropriate volume formula gives:

V =
∫ 3

0

π
(
R2 − r2

)
dy =

∫ 3

0

π

([√
25− y2

]2
− 42

)
dy

= π

∫ 3

0

(
25− y2 − 16

)
dy = π

∫ 3

0

(
9− y2

)
dy = π

(
9y − y3

3

)∣∣∣∣1
0

= π

(
9 · 3− 33

3

)
− π

(
9 · 0− 03

3

)
= π (27− 9)− π · 0 = 18π �

6. Find the domain, all the intercepts, maximum, minimum, and inflection points, and
all the vertical and horizontal asymptotes of f(x) = xex, and sketch its graph. [15]

Solution. We run through the usual checklist:

i. (Domain) f(x) = xex is defined and continuous for all x, since it is the product of
two functions that are. �

ii. (Intercepts) f(0) = 0e0 = 0, so the y-intercept is at y = 0, which means it’s also an
x-intercept. Since ex > 0 for all x, f(x) = xex = 0 only when x = 0, so there are no
other x-intercepts. �

iii. (Vertical asymptotes) Since f(x) is defined and continuous for all x, it has no vertical
asymptotes. �
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iv. (Horizontal asymptotes)

lim
x→+∞

xex = +∞ since x→ +∞ and ex → +∞ as x→ +∞.

lim
x→−∞

xex is harder since x→ −∞ and ex → 0 as x→ −∞ . . .

= lim
x→−∞

x

e−x
→ −∞
→ +∞ as x→ −∞, so we can use l’Hôpital’s Rule:

= lim
x→−∞

d
dxx
d
dxe
−x

= lim
x→−∞

1
−e−x

→ 1
→ −∞ = 0

Thus f(x) = xex has a horizontal asymptote of y = 0 in the −’ve direction only. �

v. (Maxima, minima, etc.) First, using the Product Rule, f ′(x) = d
dx (xex) = 1ex +

xex = (1 + x)ex. Since ex > 0 for all x, it follows that f ′(x) is less than, equal to,
or greater than 0 depending on whether 1 + x is, respectively, less than, equal to, or
greater than 0. We build the usual table:

x (−∞,−1) −1 (−1,+∞)
f ′(x) − 0 +
f(x) ↓ min ↑

Thus the only critical point, at x = −1, is a minimum. Since f(x) is defined, continu-
ous, and differentiable everywhere, it is an absolute, not just a local, minimum. Note
that f(−1) = (−1)e−1 = − 1

e . �

vi. (Curvature and inflection points ) First, using the Product Rule again, f ′′(x) =
d
dx [(1 + x)ex] = 1ex + (1 + x)ex = (2 + x)ex. Since ex > 0 for all x, it follows
that f ′(x) is less than, equal to, or greater than 0 depending on whether 2 + x is,
respectively, less than, equal to, or greater than 0. We build the usual table:

x (−∞,−2) −2 (−2,+∞)
f ′′(x) − 0 +
f(x) _ infl. pt. ^

Thus x = −2, the only point where f ′′(x) = 0, is indeed an inflection point. �

vii. (Graph) Cheating slightly, here is a graph of f(x) = xex drawn by a graphing program
called kmplot:

�
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7. Freyja and Hretha sprint 100 m in lanes that are 5 m apart. The two start simulta-
neously at t = 0 s. Freyja runs at 9.6 m/s and Hretha at 10m/s.

a. How far ahead is Hretha when she crosses the finish line? When does Freyja cross
the finish line? [1]

b. Determine how quickly Hretha is pulling ahead as she crosses the finish line. [1]

c. Determine how the distance [along a direct line] between the two is changing at
the instant that Hretha crosses the finish line. [8]

d. The two runners’ starting positions and their positions at any instant thereafter
form a trapezoid. How is the area of this trapezoid changing at the instant that
Hretha crosses the finish line? [5]

Solution to a. If Hretha runs at 10 m/s she will cover 100 m in 10 s, in which time
Freyja will have run 9.6 m/s × 10 s = 96 m. Thus Hretha is 100 − 96 = 4 m ahead of
Freyja at the instant that she crosses the finish line.

Freyja crosses the finish line in (100 m) / (9.6 m/s) ≈ 10.417 s. �

Solution to b. At any given instant after the start, including the instant Hretha crosses
the finish line, she is running 10− 9.6 = 0.4 m/s faster than Freyja. �

Solution to c. Let x denote how far ahead Hretha is and s denote the straight-line
distance between the two runners at time t > 0. From the answer to a above, x(10) = 4;

from the answer to b above,
dx

dt
= 0.4 at each instant t > 0. Since the lanes in which

they run are 5 m apart, we also know the straight-line distance between the two runners
is given by s =

√
52 + x2 =

√
25− x2 at each instant t > 0. Thus

ds

dt
=

d

dt

√
25 + x2 =

1
2
√

25 + x2
· d
dt

(
25 + x2

)
=

1
2
√

25 + x2
· 2x · dx

dt
=

0.4x√
25 + x2

;

when Hretha crosses the finish line we have x = 4, so the distance between the two runners
is increasing at a rate of

ds

dt

∣∣∣∣
x=4

=
0.4x

25 + x2

∣∣∣∣
x=4

=
0.4 · 4√
25 + 42

=
1.6√

41
≈ 0.249878 m/s . �

Solution to d. At any given instant, he trapezoid in question can be thought of as a
rectangle plus a triangle, where the rectangle’s corners are the starting points of the two
runners, Freyja’s position in her lane, and the position directly across from her in Hretha’s
lane, and the triangle’s corners are Freyja’s position in her lane, the position directly across
from her in Hretha’s lane, and Hretha’s position in her own lane. The bases of the rectangle
and of the triangle are a constant 5 m, the height of the triangle at any given instant is
given by the distance Hretha is ahead of Freyja – i.e. the quantity x in the solution to c
above, and the height of the rectangle at any given instant is given by how far from the
starting line Hretha is – call this quantity y. (Note that it follows from the reasoning in
the solution to b that dx

dt = 0.4 m/s and dy
dt = 9.6 m/s.)
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The area of the trapezoid is thus given by

A = 5y +
1
2

5x = 5y + 2.5x .

It follows that at any given instant

dA

dt
= 5

dy

dt
+ 2.5

dx

dt
= 5 · 9.6 + 2.5 · 0.4 = 48 + 1 = 49 m2/s .

Since this rate is constant, it is, in particular, how the area of the trapezoid is changing at
the instant that Hretha crosses the finish line. �

Part ♣. Do one (1) of 8 or 9. [15 = 1 × 15 each]

8. Consider the power series
∞∑
n=0

n+ 1
2n+1

xn.

a. Find the radius of convergence of this power series. [10]
b. What function has this power series as its Taylor series at 0? [5]

Solution to a. We’ll use the Ratio Test:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣
(n+1)+1
2(n+1)+1 x

n+1

n+1
2n+1xn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣ (n+ 1) + 1
2(n+1)+1

· 2n+1

n+ 1
· x
∣∣∣∣ = lim

n→∞

n+ 2
n+ 1

· |x|
2

=
|x|
2

lim
n→∞

n+ 2
n+ 1

=
|x|
2

lim
n→∞

n+ 2
n+ 1

·
1
n
1
n

=
|x|
2

lim
n→∞

1 + 2
n

1 + 1
n

=
|x|
2
· 1 + 0

1 + 0
=
|x|
2

It follows from the Ratio Test that the series converges (absolutely) when |x|
2 < 1, i.e.

when |x| < 2, and diverges when |x|2 > 1, i.e. when |x| > 2. This means that the radius of
convergence of the given power series is R = 2. �

Solution to b. Note that
d

dx

(
xn+1

2n+1

)
=
n+ 1
2n+1

xn for each n ≥ 0. The series
∞∑
n=0

xn+1

2n+1

is a geometric series with initial term a = x
2 and common ratio r = x

2 , which is therefore

equal to
a

1− r
=

x
2

1− x
2

=
x

2− x
when it converges. It follows that

∞∑
n=0

n+ 1
2n+1

xn =
∞∑
n=0

d

dx

(
xn+1

2n+1

)
=
∞∑
n=0

xn+1

2n+1
=

d

dx

x

2− x
=

1(2− x)− x(−1)
(2− x)2

=
2

(2− x)2
,

at least within its radius of convergence. Since a power series equal to a function must be

that function’s Taylor series, this means that
∞∑
n=0

n+ 1
2n+1

xn is the Taylor series of f(x) =

2
(2− x)2

. �
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9. Let f(x) = x sin(3x).
a. Find the Taylor series at 0 of f(x). [10]
b. Determine the radius of convergence of this Taylor series. [5]

Solution to a. We’ll do this indirectly, using the fact that sin(u) =
∞∑
n=0

(−1)n

(2n+ 1)!
u2n+1.

It follows that

f(x) = x sin(3x) = x

∞∑
n=0

(−1)n

(2n+ 1)!
(3x)2n+1

= x
∞∑
n=0

(−1)n32n+1

(2n+ 1)!
x2n+1 =

∞∑
n=0

(−1)n32n+1

(2n+ 1)!
x2n+2 ,

at least when the series converges. Since a power series equal to a function must be that
function’s Taylor series, this means that the Taylor series at 0 of f(x) = x sin(3x) is
∞∑
n=0

(−1)n32n+1

(2n+ 1)!
x2n+2. �

Solution to b. The series obtained in the solution to a converges for all x. This can
be shown pretty easily using the Ratio Test, but it can also be reasoned out by examining
how it was obtained in that solution:

The Taylor series at 0 for sin(u) is known (from, say, the class or the text)
to converge for all u, so it must converge for u = 3x no matter what the value
of x is. Multiplying the series for sin(3x) by x is not going to change whether it
converges or not. [Except, hypothetically, that a series that fails to converge may
be forced to do so if you multiply through by x = 0.] Thus the series obtained in
the solution to a must converge for all x. �

[Total = 100]

Part ♠. Bonus problems! Do them (or not), if you feel like it.

0. Sketch the graph of r = 1− e−θ [polar coordinates!] for θ ≥ 0, and explain why
it has the shape it does. [2]

−1. Write an original poem touching on calculus or mathematics in general. [2]

I the course was fun, at least a little.
Enjoy the rest of the summer!
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