Mathematics 1100Y - Calculus I: Calculus of one variable
 Trent University, Summer 2012

Assignment \#11

Powerfully series business

Due on Wednesday, 1 August, 2012.

1. Suppose x is a variable and a_{n} for $n \geq 0$ are constants such that

$$
\begin{aligned}
\sum_{n=0}^{\infty} a_{n} x^{n} & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots \\
& =\left(1+x+x^{2}+x^{3}+\cdots\right)^{2}=\left(\sum_{n=0}^{\infty} x^{n}\right)^{2}
\end{aligned}
$$

Find a formula for a_{n} in terms of n. [3]
Hint: Work out the first few a_{n} s by multiplying out $\left(1+x+x^{2}+x^{3}+\cdots\right)^{2}$ and then collecting like terms, and look for a pattern.
2. Use Maple to find the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$. [4]
3. Assume that $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\cdots$ no matter what value is given to the variable x. There is another power series $\sum_{n=0}^{\infty} b_{n} x^{n}$ such that

$$
\left(\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\right)\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)=1
$$

for every value of the variable x. Find a formula for b_{n} in terms of n. [3]

