MATH 1100Y Test 2

6 July, 2011
Time: 50 minutes

Total

Instructions

- Show all your work. Legibly, please!
- If you have a question, ask it!
- Use the extra page and the back sides of the test sheets for rough work or extra space.
- You may use a calculator and an aid sheet.

1. Compute any four (4) of the integrals in parts a-f. [16 $=4 \times 4$ each]
a. $\int \tan ^{2}(x) d x$
b. $\int_{0}^{3 / 2} 2(2 x+1)^{3 / 2} d x$
c. $\int x e^{x} d x$
d. $\int_{0}^{\pi} x \cos (x) d x$
e. $\int \sec ^{3}(x) \tan (x) d x$
f. $\int_{0}^{1}\left(x^{2}+2 x+3\right) d x$

Solution to a. We'll rewrite it using the trig identity $\tan ^{2}(x)=\sec ^{2}(x)-1$:

$$
\int \tan ^{2}(x) d x=\int\left(\sec ^{2}(x)-1\right) d x=\int \sec ^{2}(x) d x-\int 1 d x=\tan (x)-x+C
$$

Solution to b. We'll use the substitution $u=2 x+1$, so $d u=2 d x$ and $\begin{array}{ccc}x & 0 & 3 / 2 \\ u & 1 & 4\end{array}$.

$$
\begin{aligned}
\int_{0}^{3 / 2} 2(2 x+1)^{3 / 2} d x & =\int_{1}^{4} u^{3 / 2} d u=\left.\frac{u^{5 / 2}}{5 / 2}\right|_{1} ^{4}=\frac{1}{5 / 2}\left(4^{5 / 2}-1^{5 / 2}\right) \\
& =\frac{2}{5}\left(2^{5}-1^{5}\right)=\frac{2}{5}(32-1)=\frac{2}{5} 31=\frac{62}{5}
\end{aligned}
$$

Solution to c. We'll use integration by parts, with $u=x$ and $v^{\prime}=e^{x}$, so $u^{\prime}=1$ and $v=e^{x}$.

$$
\int x e^{x} d x=\int u v^{\prime} d x=u v-\int u^{\prime} v d x=x e^{x}-\int 1 e^{x} d x=x e^{x}-e^{x}+C
$$

Solution to d. We will also use integration by parts here, with $u=x$ and $v^{\prime}=\cos (x)$, so $u^{\prime}=1$ and $v=\sin (x)$.

$$
\begin{aligned}
\int_{0}^{\pi} x \cos (x) d x & =\int_{0}^{\pi} u v^{\prime} d x=\left.u v\right|_{0} ^{\pi}-\int_{0}^{\pi} u^{\prime} v d x=\left.x \sin (x)\right|_{0} ^{\pi}-\int_{0}^{\pi} 1 \sin (x) d x \\
& =(\pi \sin (\pi)-0 \sin (0))-\left.(-\cos (x))\right|_{0} ^{\pi}=\pi 0-0+\left.\cos (x)\right|_{0} ^{\pi} \\
& =\cos (\pi)-\cos (0)=-1-1=-2 \quad \square
\end{aligned}
$$

Solution to e. We'll use the substitution $u=\sec (x)$, so $d u=\sec (x) \tan (x) d x$.

$$
\int \sec ^{3}(x) \tan (x) d x=\int \sec ^{2}(x) \sec (x) \tan (x) d x=\int u^{2} d u=\frac{u^{3}}{3}+C=\frac{1}{3} \sec ^{3}(x)+C
$$

Solution to f. The Power Rule is the main tool:

$$
\begin{aligned}
\int_{0}^{1}\left(x^{2}+2 x+3\right) d x & =\int_{0}^{1} x^{2} d x+\int_{0}^{1} 2 x d x+\int_{0}^{1} 3 d x=\left.\frac{x^{3}}{3}\right|_{0} ^{1}+\left.x^{2}\right|_{0} ^{1}+\left.3 x\right|_{0} ^{1} \\
& =\left(\frac{1^{3}}{3}-\frac{0^{3}}{3}\right)+\left(1^{2}-0^{2}\right)+(3 \cdot 1-3 \cdot 0)=\frac{1}{3}+1+3=\frac{13}{3}
\end{aligned}
$$

2. Do any two (2) of parts a-e. $[12=2 \times 6$ each]
a. Compute $\int_{0}^{3} \sqrt{9-x^{2}} d x$. What does this integral represent?
b. Sketch the solid obtained by rotating the region bounded by $y=x, y=0$, and $x=2$ about the y-axis, and find its volume.
c. Give an example of a function $f(x)$ with $f^{\prime}(x)=1-\int_{0}^{x} f(t) d t$ for all x.
d. Sketch the region between $y=\sin (x)$ and $y=-\sin (x)$ for $0 \leq x \leq 2 \pi$, and find its area.
e. Compute $\int_{1}^{2} x d x$ using the Right-hand Rule.

Solution to a. We will use the substitution $x=3 \sin (\theta)$, so $d x=3 \cos (\theta) d \theta$ and $x \quad 0 \quad 3$ $\begin{array}{lll}\theta & 0 & \pi / 2\end{array}$

$$
\begin{aligned}
\int_{0}^{3} \sqrt{9-x^{2}} d x & =\int_{0}^{\pi / 2} \sqrt{9-9 \sin ^{2}(\theta)} 3 \cos (\theta) d \theta=\int_{0}^{\pi / 2} 3 \sqrt{1-\sin ^{2}(\theta)} 3 \cos (\theta) d \theta \\
& =\int_{0}^{\pi / 2} 3 \sqrt{\cos ^{2}(\theta)} 3 \cos (\theta) d \theta=\int_{0}^{\pi / 2} 3 \cos (\theta) 3 \cos (\theta) d \theta \\
& =\int_{0}^{\pi / 2} 9 \cos ^{2}(\theta) d \theta=9 \int_{0}^{\pi / 2}\left(\frac{1}{2}+\frac{1}{2} \cos (2 \theta)\right) d \theta
\end{aligned}
$$

$$
\text { Substitute } u=2 \theta \text {, so } d u=2 d \theta \text { and } \frac{1}{2} d u=d \theta \text {, and } \begin{array}{ccc}
\theta & 0 & \pi / 2 \\
u & 0 & \pi
\end{array} \text {. }
$$

$$
=9 \int_{0}^{\pi}\left(\frac{1}{2}+\frac{1}{2} \cos (u)\right) \frac{1}{2} d u=\frac{9}{4} \int_{0}^{\pi}(1+\cos (u)) d u
$$

$$
=\left.\frac{9}{4}(u+\sin (u))\right|_{0} ^{\pi}=\frac{9}{4}(\pi+\sin (\pi))-\frac{9}{4}(0+\sin (0))
$$

$$
=\frac{9}{4}(\pi+0)-\frac{9}{4}(0+0)=\frac{9}{4} \pi
$$

Since $y=\sqrt{9-x^{2}}$ implies that $x^{2}+y^{2}=3^{2}$, since we're taking the positive square root, and since $0 \leq x \leq 3$, the integral gives the area of the quarter of the circle of radius 3 centred at the origin that lies in the first quadrant (i.e. where $x \geq 0$ and $y \geq 0$).
Solution to b. Here's a sketch of the solid, with the original region shaded in:

The volume is about as easy to compute with either the washer or the cylindrical shell method. We'll do it with shells; since we rotated about a vertical line and are using shells, we have to integrate with respect to x. The cylindrical shell at x has radius $r=x-0=x$ and height $h=x-0=x$, so its area is $2 \pi r h=2 \pi x x=2 \pi x^{2}$. We plug this into the volume formula for shells:

$$
V=\int_{0}^{2} 2 \pi r h d x=\int_{0}^{2} 2 \pi x^{2} d x=\left.2 \pi \frac{x^{3}}{3}\right|_{0} ^{2}=2 \pi \frac{2^{3}}{3}-2 \pi \frac{0^{3}}{3}=2 \pi \frac{8}{3}-0=\frac{16}{3} \pi
$$

Note that, as always, the limits for the integral come from the original region.
Solution to c. First, note that $f^{\prime}(0)=1-\int_{0}^{0} f(x) d x=1-0=1$. Second, note that it follows from the Fundamental Theorem of Calculus that

$$
f^{\prime \prime}(x)=\frac{d}{d x} f^{\prime}(x)=\frac{d}{d x}\left(1-\int_{0}^{x} f(t) d t\right)=0-f(x)=-f(x)
$$

So, how many functions do you know such that $f^{\prime \prime}(x)=-f(x)$ and $f^{\prime}(0)=1$? Both $\sin (x)$ and $\cos (x)$ meet the first requirement. Since $\frac{d}{d x} \sin (x)=\cos (x)$ and $\cos (0)=1$, $f(x)=\sin (x)$ does the job.

Solution to d. Here's a crude sketch:

Note that between 0 and $\pi, \sin (x) \geq 0$, so $\sin (x) \geq-\sin (x)$, and between π and 2π, $\sin (x) \leq 0$, so $-\sin (x) \geq \sin (x)$. It follows that the area of the region is:

$$
\begin{aligned}
A & =\int_{0}^{\pi}(\sin (x)-(-\sin (x))) d x+\int_{\pi}^{2 \pi}((-\sin (x))-\sin (x)) d x \\
& =\int_{0}^{\pi} 2 \sin (x) d x-\int_{\pi}^{2 \pi} 2 \sin (x) d x=-\left.2 \cos (x)\right|_{0} ^{\pi}-\left.(-2 \cos (x))\right|_{\pi} ^{2 \pi} \\
& =[-2 \cos (\pi)-(-2 \cos (0))]-[-2 \cos (2 \pi)-(-2 \cos (\pi))] \\
& =[-2(-1)-(-2 \cdot 1)]-[-2 \cdot 1-(-2(-1))]=[2+2]-[-2-2]=8
\end{aligned}
$$

Solution to e. We plug into the Right-hand Rule formula, namely $\int_{a}^{b} f(x) d x=$ $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{b-a}{n} f\left(a+i \frac{b-a}{n}\right)$, and chug away. In this case $a=1, b=2$, and $f(x)=x$.

$$
\begin{aligned}
\int_{1}^{2} x d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{2-1}{n} f\left(1+i \frac{2-1}{n}\right)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{n} f\left(1+\frac{i}{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n}\left(1+\frac{i}{n}\right)=\lim _{n \rightarrow \infty} \frac{1}{n}\left[\left(\sum_{i=1}^{n} 1\right)+\left(\sum_{i=1}^{n} \frac{i}{n}\right)\right] \\
& =\lim _{n \rightarrow \infty} \frac{1}{n}\left[n+\frac{1}{n} \sum_{i=1}^{n} i\right]=\lim _{n \rightarrow \infty} \frac{1}{n}\left[n+\frac{1}{n} \cdot \frac{n(n+1)}{2}\right] \\
& =\lim _{n \rightarrow \infty} \frac{1}{n}\left[n+\frac{n+1}{2}\right]=\lim _{n \rightarrow \infty} \frac{1}{n}\left[\frac{3}{2} n+\frac{1}{2}\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{3}{2}+\frac{1}{2 n}\right]=\frac{3}{2}+0=\frac{3}{2}
\end{aligned}
$$

3. The region between $y=\sqrt{1-x^{2}}$ and $y=2 x-2$, where $0 \leq x \leq 1$, is rotated about the y-axis to make a solid. Do part a and one (1) of parts \mathbf{b} or \mathbf{c}.
a. Sketch the solid of revolution described above. [3]
b. Find the volume of the solid using the disk/washer method. [9]
c. Find the volume of the solid using the method of cylindrical shells. [9]

Solution to a. Here's a sketch of the solid, with the original region shaded in:

Anyone for ice cream?
Solution to b. Since we rotated about a vertical line and are using washers, we have to integrate with respect to y. y runs from -2 - the y-intercept of $y=2 x-2$ - to 1 - the y-intercept of $y=\sqrt{1-x^{2}}$ - for the given region. The problem is that the outer radius of the washer at y is $R=x=\frac{1}{2} y+1$ for $-2 \leq y \leq 0$, but is $R=x=\sqrt{1-y^{2}}$ for $0 \leq y \leq 1$, so we will have to break the integral up accordingly. Note that the inner radius of each washer is $r=0$ either way, so every washer is actually a disk. We plug all this into the volume formula for the washer method:

$$
\begin{aligned}
V & =\int_{-2}^{0} \pi\left(R^{2}-r^{2}\right) d y+\int_{0}^{1} \pi\left(R^{2}-r^{2}\right) d y \\
& =\pi \int_{-2}^{0}\left(\left(\frac{1}{2} y+1\right)^{2}-0^{2}\right) d y+\pi \int_{0}^{1}\left(\left(\sqrt{1-y^{2}}\right)^{2}-0^{2}\right) d y \\
& =\pi \int_{-2}^{0}\left(\frac{1}{4} y^{2}+y+1\right) d y+\pi \int_{0}^{1}\left(1-y^{2}\right) d y \\
& =\left.\pi\left(\frac{1}{4} \cdot \frac{y^{3}}{3}+\frac{y^{2}}{2}+y\right)\right|_{-2} ^{0}+\left.\pi\left(y-\frac{y^{3}}{3}\right)\right|_{0} ^{1} \\
& =\pi\left(\frac{0^{3}}{12}+\frac{0^{2}}{2}+0\right)-\pi\left(\frac{(-2)^{3}}{12}+\frac{(-2)^{2}}{2}+(-2)\right)+\pi\left(1-\frac{1^{3}}{3}\right)-\pi\left(0-\frac{0^{3}}{3}\right) \\
& =0-\pi\left(\frac{-8}{12}+\frac{4}{2}-2\right)+\pi \frac{2}{3}-0=-\pi \frac{-2}{3}+\pi \frac{2}{3}=\frac{4}{3} \pi
\end{aligned}
$$

Solution to c. Since we rotated about a vertical line and are using shells, we have to integrate with respect to x. The cylindrical shell at x has radius $r=x$ and height $h=\sqrt{1-x^{2}}-(2 x-2)=\sqrt{1-x^{2}}-2 x+2$. We plug these into the volume formula for the shell method:

$$
\begin{aligned}
V & =\int_{0}^{1} 2 \pi r h d x=2 \pi \int_{0}^{1} x\left(\sqrt{1-x^{2}}-2 x+2\right) d x \\
& =2 \pi \int_{0}^{1} x \sqrt{1-x^{2}} d x-2 \pi \int_{0}^{1} 2 x^{2} d x+2 \pi \int_{0}^{1} 2 x d x
\end{aligned}
$$

In the first integral, substitute $u=1-x^{2}$, so $d u=-2 x d x$ and $(-1) d u=2 x d x$, and change limits accordingly: $\begin{array}{lll}x & 0 & 1 \\ u & 1 & 0\end{array}$
$=\pi \int_{1}^{0} \sqrt{u}(-1) d u-\left.4 \pi \frac{x^{3}}{3}\right|_{0} ^{1}+\left.2 \pi x^{2}\right|_{0} ^{1}$
$=\pi \int_{0}^{1} u^{1 / 2} d u-4 \pi\left[\frac{1^{3}}{3}-\frac{0^{3}}{3}\right]+2 \pi\left[1^{2}-0^{2}\right]=\left.\pi \frac{u^{3 / 2}}{3 / 2}\right|_{0} ^{1}-\frac{4}{3} \pi+2 \pi$
$=\pi\left[\frac{2}{3} 1^{3 / 2}-\frac{2}{3} 0^{3 / 2}\right]+\frac{2}{3} \pi=\frac{2}{3} \pi+\frac{2}{3} \pi=\frac{4}{3} \pi$

This is the extra page!

$$
[\text { Total }=40]
$$

