Mathematics 1100Y – Calculus I: Calculus of one variable TRENT UNIVERSITY, SUMMER 2011

MATH 1100Y Test 2

6 July, 2011

Time: 50 minutes

Instructions

- Show all your work. Legibly, please!
- If you have a question, ask it!
- Use the extra page and the back sides of the test sheets for rough work or extra space.
- You may use a calculator and an aid sheet.
- **1.** Compute any four (4) of the integrals in parts **a-f**. $[16 = 4 \times 4 \text{ each}]$

a.
$$\int \tan^2(x) dx$$
 b. $\int_0^{3/2} 2(2x+1)^{3/2} dx$ **c.** $\int xe^x dx$
d. $\int_0^\pi x \cos(x) dx$ **e.** $\int \sec^3(x) \tan(x) dx$ **f.** $\int_0^1 (x^2+2x+3) dx$

- **2.** Do any two (2) of parts **a-e**. $[12 = 2 \times 6 \text{ each}]$
 - **a.** Compute $\int_0^3 \sqrt{9-x^2} \, dx$. What does this integral represent?
 - **b.** Sketch the solid obtained by rotating the region bounded by y = x, y = 0, and x = 2 about the y-axis, and find its volume.
 - **c.** Give an example of a function f(x) with $f'(x) = 1 \int_0^x f(t) dt$ for all x.
 - **d.** Sketch the region between $y = \sin(x)$ and $y = -\sin(x)$ for $0 \le x \le 2\pi$, and find its area.
 - **e.** Compute $\int_{1}^{2} x \, dx$ using the Right-hand Rule.
- **3.** The region between $y = \sqrt{1 x^2}$ and y = 2x 2, where $0 \le x \le 1$, is rotated about the *y*-axis to make a solid. Do part **a** and *one* (1) of parts **b** or **c**.
 - **a.** Sketch the solid of revolution described above. [3]
 - **b.** Find the volume of the solid using the disk/washer method. [9]
 - c. Find the volume of the solid using the method of cylindrical shells. [9]

|Total = 40|