Trent University

MATH 1100Y Test \#1

Wednesday, 8 June, 2011
Time: 50 minutes

Total

Instructions

- Show all your work. Legibly, please!
- If you have a question, ask it!
- Use the back sides of the test sheets for rough work or extra space.
- You may use a calculator and an aid sheet.

1. Find $\frac{d y}{d x}$ in any three (3) of a-d. $[9=3 \times 3$ each]
a. $y=\left(x^{2}+1\right)^{3}$
b. $\ln (x+y)=0$
c. $y=x^{2} e^{x}$
d. $y=\frac{\tan (x)}{\sec (x)}$

Solution to a. Power and Chain Rules:

$$
\frac{d y}{d x}=\frac{d}{d x}\left(x^{2}+1\right)^{3}=3\left(x^{2}+1\right)^{2} \cdot \frac{d}{d x}\left(x^{2}+1\right)=3\left(x^{2}+1\right)^{2}(2 x+0)=6 x\left(x^{2}+1\right)^{2}
$$

Solution i to b. Solve for y first, then differentiate:

$$
\begin{aligned}
\ln (x+y)=0 & \Longrightarrow x+y=e^{\ln (x+y)}=e^{0}=1 \\
& \Longrightarrow y=1-x \quad \Longrightarrow \quad \frac{d y}{d x}=0-1=-1
\end{aligned}
$$

Solution il to b. Implicit differentiation:

$$
\begin{aligned}
\ln (x+y)=0 & \Longrightarrow \frac{d}{d x} \ln (x+y)=\frac{d}{d x} 0 \quad \Longrightarrow \quad \frac{1}{x+y} \cdot \frac{d}{d x}(x+y)=0 \\
& \Longrightarrow \frac{1}{x+y} \cdot\left(1+\frac{d y}{d x}\right)=0 \quad \Longrightarrow \quad 1+\frac{d y}{d x}=(x+y) \cdot 0=0 \\
& \Longrightarrow \frac{d y}{d x}=0-1=-1 \quad \square
\end{aligned}
$$

Solution to c. Product Rule:

$$
\frac{d y}{d x}=\frac{d}{d x}\left(x^{2} e^{x}\right)=\left(\frac{d}{d x} x^{2}\right) \cdot e^{x}+x^{2} \cdot\left(\frac{d}{d x} e^{x}\right)=2 x e^{x}+x^{2} e^{x}=x(2+x) e^{x}
$$

Solution i to d. Simplify first, $y=\frac{\tan (x)}{\sec (x)}=\frac{\frac{\sin (x)}{\cos (x)}}{\frac{1}{\cos (x)}}=\frac{\sin (x)}{\cos (x)} \cdot \frac{\cos (x)}{1}=\sin (x)$, then differentiate, so $\frac{d y}{d x}=\frac{d}{d x} \sin (x)=\cos (x)$.
Solution il to d. Quotient Rule first, then simplify:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left(\frac{\tan (x)}{\sec (x)}\right)=\frac{\left(\frac{d}{d x} \tan (x)\right) \cdot \sec (x)-\tan (x) \cdot\left(\frac{d}{d x} \sec (x)\right)}{\sec ^{2}(x)} \\
& =\frac{\sec ^{2}(x) \cdot \sec (x)-\tan (x) \cdot \sec (x) \tan (x)}{\sec ^{2}(x)}=\frac{\sec ^{2}(x)-\tan ^{2}(x)}{\sec (x)} \\
& =\frac{\sec ^{2}(x)-\left(\sec ^{2}(x)-1\right)}{\sec (x)}=\frac{1}{\sec (x)}=\frac{1}{\frac{1}{\cos (x)}}=\cos (x) \quad \square
\end{aligned}
$$

2. Do any two (2) of a-c. [10 $=2 \times 5$ each]
a. Use the $\varepsilon-\delta$ definition of limits to verify that $\lim _{x \rightarrow 2}(x+1)=3$.
b. Use the limit definition of the derivative to compute $f^{\prime}(0)$ for $f(x)=x^{3}+x$.
c. Compute $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}$.

Solution to a. Suppose an $\varepsilon>0$ is given. As usual, we attempt to reverse-engineer the required δ.

$$
|(x+1)-3|<\varepsilon \quad \Longleftrightarrow \quad|x-2|<\varepsilon
$$

Since the step taken above is reversible, it follows that if we set $\delta=\varepsilon$, then whenever $|x-2|<\delta$, we will have $|(x+1)-3|<\varepsilon$ also, as required.

Hence $\lim _{x \rightarrow 2}(x+1)=3$ by the $\varepsilon-\delta$ definition of limits.
Solution to b. Here goes:

$$
\begin{aligned}
f^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{\left(h^{3}+h\right)-\left(0^{3}+0\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{h^{3}+h}{h}=\lim _{h \rightarrow 0}\left(h^{2}+1\right)=0^{2}+1=1 \quad \square
\end{aligned}
$$

Solution to c. Here goes:

$$
\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}=\lim _{x \rightarrow 3} \frac{(x+3)(x-3)}{x-3}=\lim _{x \rightarrow 3}(x+3)=3+3=6
$$

3. Do any two (2) of $\mathbf{a}-\mathbf{c}$. $[12=2 \times 6$ each $]$
a. Each side of a square is increasing at a rate of $3 \mathrm{~cm} / \mathrm{s}$. At what rate is the area of the square increasing at the instant that the sides are 6 cm long?
b. $f(x)=e^{-1 / x^{2}}=e^{-\left(x^{-2}\right)}$ has a removable discontinuity at $x=0$. What should the value of $f(0)$ be to make the function continuous at $x=0$?
c. What is the smallest possible perimeter of a rectangle with area $36 \mathrm{~cm}^{2}$?

Solution to a. Suppose the we denote the length of a side of the square by s, so its area will be $A=s^{2}$. We are given that $\frac{d s}{d t}=3$ and we wish to know $\left.\frac{d A}{d t} \right\rvert\,$ at the instant that $s=6$. We differentiate A, plug in, and then solve. $\frac{d A}{d t}=\frac{d}{d t} s^{2}=2 s \cdot \frac{d s}{d t}$, so when $s=6$, we get $\frac{d A}{d t}=2 \cdot 6 \cdot 3=36 \mathrm{~cm}^{2} / \mathrm{s}$.
Solution to b. $f(x)$ being continuous at $x=0$ amounts to having $f(0)=\lim _{x \rightarrow 0} f(x)$, so we need to compute this limit.

As $x \rightarrow 0, \frac{1}{x^{2}} \rightarrow+\infty$ (note that $x^{2}>0$ for all $x \neq 0$), and so $-\frac{1}{x^{2}} \rightarrow-\infty$. It follows that $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} e^{-1 / x^{2}}=\lim _{t \rightarrow-\infty} e^{t}=0$. Thus the value of $f(0)$ should be 0 to make $f(x)$ continuous at $x=0$.

Solution to c. Suppose a rectangle has height h and base b. Then its perimeter is $P=2 h+2 b$ and its area is $A=b h$. Note that both b and h need to be >0 for any real rectangle with positive area.

In this case $A=b h=36$, so $h=\frac{36}{b}$ and $P=2 \frac{36}{b}+2 b=\frac{72}{b}+2 b$, where $0 \leq b<\infty$. We first find the derivative, $\frac{d P}{d b}=\frac{d}{d b}\left(\frac{72}{b}+2 b\right)=-\frac{72}{b^{2}}+2$, and then build the usual table. $\frac{d P}{d b}=-\frac{72}{b^{2}}+2=0$ exactly when $2 b^{2}=72$, i.e. $b^{2}=36$, so that $b=6$. (Recall that b must be >0.) Similarly, $\frac{d P}{d b}=-\frac{72}{b^{2}}+2>0$ exactly when $2 b^{2}>72$, i.e. $b^{2}>36$, so that $b>6$, and $\frac{d P}{d b}=-\frac{72}{b^{2}}+2<0$ exactly when $2 b^{2}<72$, i.e. $b^{2}<36$, so that $b<6$. This gives the table:

b	$(0,6)$	6	$(6, \infty)$
P	\downarrow	\min	\uparrow
$\frac{d P}{d b}$	-	0	+

It follows that P has its only minimum when $b=6$, so the smallest possible perimeter of a rectangle of area $36 \mathrm{~cm}^{2}$ is $P=\frac{72}{6}+2 \cdot 6=12+12=24 \mathrm{~cm}$. Note that this rectangle is the square with sides of length 6 cm .
4. Let $f(x)=\sqrt{x^{2}+1}$. Find any and all intercepts, vertical and horizontal asymptotes, and maxima and minima of $f(x)$, and sketch its graph using this information. [9]
Solution. i. (Domain) $x^{2}+1$ is defined, continuous, differentiable, and ≥ 1 for all x. Since \sqrt{t} is defined, continuous, and differentiable when $t>0$, it follows that $f(x)=\sqrt{x^{2}+1}$ is defined, continuous, and differentiable for all x.
ii. (Intercepts) $f(0)=\sqrt{0^{2}+1}=\sqrt{1}=1$, so the y-intercept is the point $(0,1)$. Since $\sqrt{x^{2}+1} \geq \sqrt{1}=1>0$ for all x, there is no x such that $f(x)=0$, i.e. $f(x)$ has no x-intercepts.
iii. (Vertical asymptotes) Since $f(x)$ is defined and continuous for all x, as noted in i above, it has no vertical asymptotes.
$i v$. (Horizontal asymptotes) To compute the relevant limits, observe that as $x \rightarrow \pm \infty$, $x^{2}+1 \rightarrow+\infty$, and hence $\sqrt{x^{2}+1} \rightarrow+\infty$. Since $\lim _{x \rightarrow+\infty} \sqrt{x^{2}+1}=+\infty=\lim _{x \rightarrow-\infty} \sqrt{x^{2}+1}$, $f(x)=\sqrt{x^{2}+1}$ has no horizontal asymptotes.
v. (Maxima \& minima, etc.) Using the Chain and Power Rules,

$$
f^{\prime}(x)=\frac{d}{d x} \sqrt{x^{2}+1}=\frac{1}{2 \sqrt{x^{2}+1}} \cdot \frac{d}{d x}\left(x^{2}+1\right)=\frac{1}{2 \sqrt{x^{2}+1}} \cdot(2 x+0)=\frac{x}{\sqrt{x^{2}+1}} .
$$

It follows that $f^{\prime}(x)=0$ if and only if $x=0$. Moreover, since $\sqrt{x^{2}+1} \geq 1>0$ for all x, $f^{\prime}(x)$ is <0 or >0 exactly when $x<0$ or $x>0$, respectively. Here is the usual table:

x	$(-\infty, 0)$	0	$(0,+\infty)$
$f(x)$	\downarrow	\min	\uparrow
$f^{\prime}(x)$	+	0	-

Thus $f(x)$ must have a minimum at the sole critical point of $x=0$.
vi. (Graph) Cheating a bit and using Maple:

```
> plot(sqrt(x^2+1),x=-5..5,y=0..5);
```


$$
[\text { Total }=40]
$$

Bonus. Simplify $\cos (\arcsin (x))$ as much as you can. [1]
Solution. $\cos (\arcsin (x))=\sqrt{1-\sin ^{2}(\arcsin (x))}=\sqrt{1-x^{2}}$ ought to do.

