Mathematics 1100Y – Calculus I: Calculus of one variable TRENT UNIVERSITY, SUMMER 2011

MATH 1100Y Test #1

Wednesday, 8 June, 2011

Time: 50 minutes

Instructions

- Show all your work. Legibly, please!
- If you have a question, ask it!
- Use the back sides of the test sheets for rough work or extra space.
- You may use a calculator and an aid sheet.
- **1.** Find $\frac{dy}{dx}$ in any three (3) of **a**-**d**. [9 = 3 × 3 each]

a.
$$y = (x^2 + 1)^3$$
 b. $\ln(x + y) = 0$ **c.** $y = x^2 e^x$ **d.** $y = \frac{\tan(x)}{\sec(x)}$

- **2.** Do any two (2) of \mathbf{a} - \mathbf{c} . $/10 = 2 \times 5 \text{ each}/$
 - **a.** Use the $\varepsilon \delta$ definition of limits to verify that $\lim_{x \to 2} (x+1) = 3$.

b. Use the limit definition of the derivative to compute f'(0) for $f(x) = x^3 + x$. **c.** Compute $\lim_{x \to 3} \frac{x^2 - 9}{x - 3}$.

- **3.** Do any two (2) of **a**-**c**. $/12 = 2 \times 6 \text{ each}/$
 - **a.** Each side of a square is increasing at a rate of 3 cm/s. At what rate is the area of the square increasing at the instant that the sides are $6 cm \log$?
 - **b.** $f(x) = e^{-1/x^2} = e^{-(x^{-2})}$ has a removable discontinuity at x = 0. What should the value of f(0) be to make the function continuous at x = 0?
 - c. What is the smallest possible perimeter of a rectangle with area $36 \ cm^2$?
- 4. Let $f(x) = \sqrt{x^2 + 1}$. Find any and all intercepts, vertical and horizontal asymptotes, and maxima and minima of f(x), and sketch its graph using this information. [9]

$$[Total = 40]$$

Bonus. Simplify $\cos(\arcsin(x))$ as much as you can. [1]