Mathematics 1100Y - Calculus I: Calculus of one variable
 Trent University, Summer 2011
 MATH 1100Y Test \#1
 Wednesday, 8 June, 2011

Time: 50 minutes

Instructions

- Show all your work. Legibly, please!
- If you have a question, ask it!
- Use the back sides of the test sheets for rough work or extra space.
- You may use a calculator and an aid sheet.

1. Find $\frac{d y}{d x}$ in any three (3) of $\mathbf{a}-\mathbf{d}$. $[9=3 \times 3$ each $]$
a. $y=\left(x^{2}+1\right)^{3}$
b. $\ln (x+y)=0$
c. $y=x^{2} e^{x}$
d. $y=\frac{\tan (x)}{\sec (x)}$
2. Do any two (2) of a-c. $[10=2 \times 5$ each $]$
a. Use the $\varepsilon-\delta$ definition of limits to verify that $\lim _{x \rightarrow 2}(x+1)=3$.
b. Use the limit definition of the derivative to compute $f^{\prime}(0)$ for $f(x)=x^{3}+x$.
c. Compute $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}$.
3. Do any two (2) of a-c. $[12=2 \times 6$ each $]$
a. Each side of a square is increasing at a rate of $3 \mathrm{~cm} / \mathrm{s}$. At what rate is the area of the square increasing at the instant that the sides are 6 cm long?
b. $f(x)=e^{-1 / x^{2}}=e^{-\left(x^{-2}\right)}$ has a removable discontinuity at $x=0$. What should the value of $f(0)$ be to make the function continuous at $x=0$?
c. What is the smallest possible perimeter of a rectangle with area $36 \mathrm{~cm}^{2}$?
4. Let $f(x)=\sqrt{x^{2}+1}$. Find any and all intercepts, vertical and horizontal asymptotes, and maxima and minima of $f(x)$, and sketch its graph using this information. [9]

$$
[\text { Total }=40]
$$

Bonus. Simplify $\cos (\arcsin (x))$ as much as you can. [1]

