Mathematics 1100Y - Calculus I: Calculus of one variable

Trent University, Summer 2011

Solution to Assignment \#8

Smile!?

The ellipse with equation $9 x^{2}+4 y^{2}=36$ (in standard form $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$) has its x-intercepts at $x= \pm 2$. The parabola $y=a\left(x^{2}-4\right)=a x^{2}-4 a$, where we require that $a>0$, also has its x-intercepts at $x= \pm 2$.

1. Find the value of a so that the area of the part of the ellipse $9 x^{2}+4 y^{2}=36$ below the parabola $y=a\left(x^{2}-4\right)$ is exactly 2π. [10]
Hint: This is doable by hand - though you may have to read ahead to learn about trigonometric substitutions to do the relevant integral - but it would be a lot less work to use Maple...

Note: Not that you need to know it for this problem, but the area enclosed by the ellipse with equation $\frac{x^{2}}{c^{2}}+\frac{y^{2}}{d^{2}}=1$ is $\pi c d$. In this case $c=2$ and $d=3$, which makes the area of the whole ellipse 6π, so the question asks you to find the value of a which makes the area of the region $\frac{1}{3}$ the area of the whole ellipse.
Solution. We first set up the integral for the area, noting that $y=a\left(x^{2}-4\right)$ is above the lower part of the ellipse. The equation of the lower part of the ellipse is obtained as follows:

$$
9 x^{2}+4 y^{2}=36 \quad \Longrightarrow \quad y^{2}=\frac{36-9 x^{2}}{4} \quad \Longrightarrow y=-\sqrt{\frac{36-9 x^{2}}{4}}=-3 \sqrt{1-\frac{x^{2}}{4}}
$$

The area integral is then:

$$
\int_{-2}^{2}\left(a\left(x^{2}-4\right)-\left(-3 \sqrt{1-\frac{x^{2}}{4}}\right)\right) d x=\int_{-2}^{2}\left(a\left(x^{2}-4\right)+3 \sqrt{1-\frac{x^{2}}{4}}\right) d x
$$

We thus need to solve for a in the equation:

$$
\int_{-2}^{2}\left(a\left(x^{2}-4\right)+3 \sqrt{1-\frac{x^{2}}{4}}\right) d x=2 \pi
$$

Rather than try to work the integral by hand and then solve for a, we let Maple do the heavy lifting:

$$
\begin{gathered}
>\text { solve }\left(\operatorname{int}\left(\mathrm{a} *\left(\mathrm{x}^{\wedge} 2-4\right)+3 * \operatorname{sqrt}\left(1-(1 / 4) * \mathrm{x}^{\wedge} 2\right), \mathrm{x}=-2 . .2\right)=2 * \operatorname{Pi}, \mathrm{a}\right) ; \\
\frac{3}{32} \pi
\end{gathered}
$$

For those who prefer a decimal approximation:

```
> fsolve(int(a*(x^2-4)+3*sqrt(1-(1/4)*x^2),x=-2..2)=2*Pi,a);
```

0.2945243112

That's all folks!

