Mathematics 1100Y - Calculus I: Calculus of one variable
 Trent University, Summer 2011

 Assignment \#6

 Assignment \#6

 Numerical solutions

 Numerical solutions}

Your main tool for 1, at least in worksheet mode, should be the int command, which can be used for both symbolic and numerical integration. The additional tool you will need for 2, at least in worksheet mode, is the fsolve command, which is used to find numerical solutions to equations. Look them up in Maple's help! These commands normally expect you to specify a variable to integrate with respect to or solve for, respectively.

By the way, you can express ∞ in worksheet mode by typing infinity.

1. Use Maple to compute $\int_{-\infty}^{\infty} e^{-x^{2}} d x$. [5]

Solution. Worksheet-style:

$$
\begin{array}{r}
>\operatorname{int}\left(\exp \left(-x^{\wedge} 2\right), x=- \text { infinity } . . \operatorname{infinity~}\right) ; \\
\sqrt{\pi}
\end{array}
$$

Surprising, isn't it that this integral would have something to do with π ?
2. Find the value of t such that $\int_{-t}^{t} e^{-x^{2}} d x=\frac{1}{2}$. [5]

Solution. Worksheet-style:

```
> fsolve(int(exp(-x^2),x=-t..t)=0.5,t);
```

0.2554492865

Bonus: Recall that a real number is rational if it can be written as a ratio of integers, and irrational if it is not rational. Show that there are irrational numbers a and b such that a^{b} is rational. ($a=b$ is allowed, if you can pull it off.) [1]
Solution. $\sqrt{2}$ is one of the better-known irrational numbers, so we first try $a=b=\sqrt{2}$. The problem is that it is very hard to tell whether $a^{b}=\sqrt{2}^{\sqrt{2}}$ is rational or irrational. We can work around this difficulty, though.

If it's rational, we're done.
If it's irrational, however, we can still get the job done another way by setting $a=$ $\sqrt{2}^{\sqrt{2}}$ and $b=\sqrt{2}$. In this case $a^{b}=\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}=\sqrt{2}^{\sqrt{2} \cdot \sqrt{2}}=\sqrt{2}^{2}=2$ is a rational number.

Either way, there must be irrational numbers a and b such that a^{b} is rational. We just don't know which a and b actually do the job ...

