Mathematics 1100Y - Calculus I: Calculus of one variable
 Trent University, Summer 2011

Solutions to Assignment \#1
 Alien Batman logo?!

Consider the shape obtained as follows:
0 . Start with a half-disk of radius 1 .

1. Remove two side-by-side half-disks of radius $\frac{1}{2}$ (straight edges aligned!).
2. Add back in four side-by-side half-disks of radius $\frac{1}{4}$ (straight edges aligned!).
3. Remove eight side-by-side half-disks of radius $\frac{1}{8}$ (straight edges aligned!).
4. Add back in sixteen side-by-side half-disks of radius $\frac{1}{16}$ (straight edges aligned!). \vdots
2k. Add back in [how many?] side-by-side half-disks of radius [?] (straight edges aligned!).
$2 k+1$. Remove [how many?] side-by-side half-disks of radius [?] (straight edges aligned!). \vdots

The first few steps of this process are illustrated below:

1. How many half-disks are added back in or removed at step n of the process? What is their radius? [5]
Solution. At step 0 we add $1=2^{0}$ half-disk of radius $1=2^{0}$. At step 1 we remove $2=2^{1}$ half-disks, each of radius $\frac{1}{2}=\frac{1}{2^{1}}$. At step 2 we add $4=2^{2}$ half-disks, each of radius $\frac{1}{4}=\frac{1}{2^{2}}$. At step 3 we remove $8=2^{3}$ half-disks, each of radius $\frac{1}{8}=\frac{1}{2^{3}}$. At step $5 \ldots$

It should be clear from this pattern that at step n one adds (if n is even) or removes (if n is odd) 2^{n} half-disks, each of radius $\frac{1}{2^{n}}$.
2. What is the area of the shape obtained after infinitely many steps of this process? [5] Solution. The area of a half-disk of radius r is $\frac{\pi}{2} r^{2}$. Using the information we obtained in $\mathbf{1}$, the area of the shape is therefore the infinite sum:

$$
\frac{\pi}{2} 1^{2}-\frac{\pi}{2} 2\left(\frac{1}{2}\right)^{2}+\frac{\pi}{2} 4\left(\frac{1}{4}\right)^{2}-\frac{\pi}{2} 8\left(\frac{1}{8}\right)^{2}+\cdots=\frac{\pi}{2}\left(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\cdots\right)
$$

It remains to determine what this sum amounts to. To make this a bit easier, we will work with $1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\cdots$ and multiply by $\frac{\pi}{2}$ later.

One way to find the sum is to simply look at the partial sums and see where their values are headed.

n	Partial sum to nth term	Decimal value
0	1	
1	$1-\frac{1}{2}$	1.0
2	$1-\frac{1}{2}+\frac{1}{4}$	0.5
3	$1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}$	0.75
4	$1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}$	0.625
5	$1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}$	0.6875
6	$1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}+\frac{1}{64}$	0.65625
7	$1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}+\frac{1}{64}-\frac{1}{128}$	0.671875
8	$1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}+\frac{1}{64}-\frac{1}{128}+\frac{1}{256}$	0.6640625
9	$1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}+\frac{1}{64}-\frac{1}{128}+\frac{1}{256}-\frac{1}{51^{2}}$	0.66796875
10	$1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}+\frac{1}{64}-\frac{1}{128}+\frac{1}{256}-\frac{1}{512}+\frac{1}{1024}$	0.666015625
11	$1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}+\frac{1}{64}-\frac{1}{128}+\frac{1}{256}-\frac{1}{512}+\frac{1}{1024}-\frac{1}{2048}$	0.6669921875

Looking at the decimal values carefully, it is not hard to see that as n increases, the partial sums alternately hop over and under $0.6666666 \cdots=\frac{2}{3}$, getting ever closer as the hops decrease in size. The sum of the full infinite series $1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\cdots$ should therefore be $\frac{2}{3}$.

Another way to find the sum is to observe that $1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\cdots$ is a geometric series, that is, one of the form $a+a r+a r^{2}+a r^{3}+\cdots$. A little looking up tells us that as long as the common ratio between successive terms, r, has absolute value less than 1 , a geometric series sums to $\frac{a}{1-r}$. In our case $a=1$ and $r=-\frac{1}{2}$, so $1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\cdots=\frac{1}{1-\left(-\frac{1}{2}\right)}=\frac{1}{\frac{3}{2}}=\frac{2}{3}$.

Either way, it follows that the area of the shape in question is

$$
\frac{\pi}{2}\left(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\cdots\right)=\frac{\pi}{2} \cdot \frac{2}{3}=\frac{\pi}{3}
$$

